7. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 4 \end{array} \right) + \lambda \left( \begin{array} { l } 1
2
1 \end{array} \right)\), where \(\lambda\) is a scalar parameter.
The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 0
9
- 3 \end{array} \right) + \mu \left( \begin{array} { l } 5
0
2 \end{array} \right)\), where \(\mu\) is a scalar parameter.
Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(C\), find
- the coordinates of \(C\).
The point \(A\) is the point on \(l _ { 1 }\) where \(\lambda = 0\) and the point \(B\) is the point on \(l _ { 2 }\) where \(\mu = - 1\).
- Find the size of the angle \(A C B\). Give your answer in degrees to 2 decimal places.
- Hence, or otherwise, find the area of the triangle \(A B C\).