Edexcel C4 2007 June — Question 8

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2007
SessionJune
TopicDifferential equations

8. A population growth is modelled by the differential equation $$\frac { \mathrm { d } P } { \mathrm {~d} t } = k P ,$$ where \(P\) is the population, \(t\) is the time measured in days and \(k\) is a positive constant.
Given that the initial population is \(P _ { 0 }\),
  1. solve the differential equation, giving \(P\) in terms of \(P _ { 0 } , k\) and \(t\). Given also that \(k = 2.5\),
  2. find the time taken, to the nearest minute, for the population to reach \(2 P _ { 0 }\). In an improved model the differential equation is given as $$\frac { \mathrm { d } P } { \mathrm {~d} t } = \lambda P \cos \lambda t$$ where \(P\) is the population, \(t\) is the time measured in days and \(\lambda\) is a positive constant.
    Given, again, that the initial population is \(P _ { 0 }\) and that time is measured in days,
  3. solve the second differential equation, giving \(P\) in terms of \(P _ { 0 } , \lambda\) and \(t\). Given also that \(\lambda = 2.5\),
  4. find the time taken, to the nearest minute, for the population to reach \(2 P _ { 0 }\) for the first time, using the improved model.