4.
$$\frac { 2 \left( 4 x ^ { 2 } + 1 \right) } { ( 2 x + 1 ) ( 2 x - 1 ) } \equiv A + \frac { B } { ( 2 x + 1 ) } + \frac { C } { ( 2 x - 1 ) } .$$
- Find the values of the constants \(A , B\) and \(C\).
- Hence show that the exact value of \(\int _ { 1 } ^ { 2 } \frac { 2 \left( 4 x ^ { 2 } + 1 \right) } { ( 2 x + 1 ) ( 2 x - 1 ) } \mathrm { d } x\) is \(2 + \ln k\), giving the value of the constant \(k\).