| Exam Board | Edexcel |
| Module | C4 (Core Mathematics 4) |
| Year | 2011 |
| Session | January |
| Topic | Integration with Partial Fractions |
3. (a) Express \(\frac { 5 } { ( x - 1 ) ( 3 x + 2 ) }\) in partial fractions.
(b) Hence find \(\int \frac { 5 } { ( x - 1 ) ( 3 x + 2 ) } \mathrm { d } x\), where \(x > 1\).
(c) Find the particular solution of the differential equation
$$( x - 1 ) ( 3 x + 2 ) \frac { \mathrm { d } y } { \mathrm {~d} x } = 5 y , \quad x > 1$$
for which \(y = 8\) at \(x = 2\). Give your answer in the form \(y = \mathrm { f } ( x )\).