Edexcel C4 (Core Mathematics 4) 2011 January

Question 1
View details
  1. Use integration to find the exact value of
$$\int _ { 0 } ^ { \frac { \pi } { 2 } } x \sin 2 x \mathrm {~d} x$$
Question 2
View details
2. The current, \(I\) amps, in an electric circuit at time \(t\) seconds is given by $$I = 16 - 16 ( 0.5 ) ^ { t } , \quad t \geqslant 0$$ Use differentiation to find the value of \(\frac { \mathrm { d } I } { \mathrm {~d} t }\) when \(t = 3\).
Give your answer in the form \(\ln a\), where \(a\) is a constant.
Question 3
View details
3. (a) Express \(\frac { 5 } { ( x - 1 ) ( 3 x + 2 ) }\) in partial fractions.
(b) Hence find \(\int \frac { 5 } { ( x - 1 ) ( 3 x + 2 ) } \mathrm { d } x\), where \(x > 1\).
(c) Find the particular solution of the differential equation $$( x - 1 ) ( 3 x + 2 ) \frac { \mathrm { d } y } { \mathrm {~d} x } = 5 y , \quad x > 1$$ for which \(y = 8\) at \(x = 2\). Give your answer in the form \(y = \mathrm { f } ( x )\).
Question 4
View details
  1. Relative to a fixed origin \(O\), the point \(A\) has position vector \(\mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k }\) and the point \(B\) has position vector \(- 2 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }\). The points \(A\) and \(B\) lie on a straight line \(l\).
    1. Find \(\overrightarrow { A B }\).
    2. Find a vector equation of \(l\).
    The point \(C\) has position vector \(2 \mathbf { i } + p \mathbf { j } - 4 \mathbf { k }\) with respect to \(O\), where \(p\) is a constant. Given that \(A C\) is perpendicular to \(l\), find
  2. the value of \(p\),
  3. the distance \(A C\).
Question 5
View details
  1. (a) Use the binomial theorem to expand
$$( 2 - 3 x ) ^ { - 2 } , \quad | x | < \frac { 2 } { 3 }$$ in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\). Give each coefficient as a simplified fraction. $$\mathrm { f } ( x ) = \frac { a + b x } { ( 2 - 3 x ) ^ { 2 } } , \quad | x | < \frac { 2 } { 3 } , \quad \text { where } a \text { and } b \text { are constants. }$$ In the binomial expansion of \(\mathrm { f } ( x )\), in ascending powers of \(x\), the coefficient of \(x\) is 0 and the coefficient of \(x ^ { 2 }\) is \(\frac { 9 } { 16 }\). Find
(b) the value of \(a\) and the value of \(b\),
(c) the coefficient of \(x ^ { 3 }\), giving your answer as a simplified fraction.
Question 6
View details
  1. The curve \(C\) has parametric equations
$$x = \ln t , \quad y = t ^ { 2 } - 2 , \quad t > 0$$ Find
  1. an equation of the normal to \(C\) at the point where \(t = 3\),
  2. a cartesian equation of \(C\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a3ece8a8-8107-4c3a-a6a9-c19b5e35ec5a-10_579_759_740_571} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} The finite area \(R\), shown in Figure 1, is bounded by \(C\), the \(x\)-axis, the line \(x = \ln 2\) and the line \(x = \ln 4\). The area \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
  3. Use calculus to find the exact volume of the solid generated.
Question 7
View details
7. $$I = \int _ { 2 } ^ { 5 } \frac { 1 } { 4 + \sqrt { } ( x - 1 ) } \mathrm { d } x$$
  1. Given that \(y = \frac { 1 } { 4 + \sqrt { } ( x - 1 ) }\), complete the table below with values of \(y\) corresponding to \(x = 3\) and \(x = 5\). Give your values to 4 decimal places.
    \(x\)2345
    \(y\)0.20.1745
  2. Use the trapezium rule, with all of the values of \(y\) in the completed table, to obtain an estimate of \(I\), giving your answer to 3 decimal places.
  3. Using the substitution \(x = ( u - 4 ) ^ { 2 } + 1\), or otherwise, and integrating, find the exact value of \(I\).