2 Jonathan and Hoshi play a zero-sum game.
The game is represented by the following pay-off matrix for Jonathan.
| \multirow{6}{*}{Jonathan} | Hoshi |
| Strategy | \(\mathbf { H } _ { \mathbf { 1 } }\) | \(\mathbf { H } _ { \mathbf { 2 } }\) | \(\mathbf { H } _ { \mathbf { 3 } }\) |
| \(\mathbf { J } _ { \mathbf { 1 } }\) | -2 | 3 | 2 |
| \(\mathbf { J } _ { \mathbf { 2 } }\) | 3 | 2 | 0 |
| \(\mathbf { J } _ { \mathbf { 3 } }\) | 4 | -1 | 3 |
| \(\mathbf { J } _ { \mathbf { 4 } }\) | 3 | 1 | 0 |
The game does not have a stable solution.
Which strategy should Jonathan never play?
Circle your answer.
[0pt]
[1 mark]
\(\mathbf { J } _ { \mathbf { 1 } }\)
\(\mathbf { J } _ { \mathbf { 2 } }\)
\(\mathbf { J } _ { \mathbf { 3 } }\)
\(\mathbf { J } _ { \mathbf { 4 } }\)