AQA Further Paper 2 (Further Paper 2) 2020 June

Question 1
View details
1 Three of the four expressions below are equivalent to each other.
Which of the four expressions is not equivalent to any of the others? Circle your answer.
\(\mathbf { a } \times ( \mathbf { a } + \mathbf { b } )\)
\(( \mathbf { a } + \mathbf { b } ) \times \mathbf { b }\)
\(( \mathbf { a } - \mathbf { b } ) \times \mathbf { b }\)
\(\mathbf { a } \times ( \mathbf { a } - \mathbf { b } )\)
Question 2
View details
2 Given that arg \(( a + b \mathrm { i } ) = \varphi\), where \(a\) and \(b\) are positive real numbers and \(0 < \varphi < \frac { \pi } { 2 }\), three of the following four statements are correct. Which statement is not correct? Tick \(( \checkmark )\) one box. $$\begin{aligned} & \arg ( - a - b \mathrm { i } ) = \pi - \varphi
& \arg ( a - b \mathrm { i } ) = - \varphi
& \arg ( b + a \mathrm { i } ) = \frac { \pi } { 2 } - \varphi
& \arg ( b - a \mathrm { i } ) = \varphi - \frac { \pi } { 2 } \end{aligned}$$
Question 3
View details
3 Find the gradient of the tangent to the curve $$y = \sin ^ { - 1 } x$$ at the point where \(x = \frac { 1 } { 5 }\)
Circle your answer.
\(\frac { 5 \sqrt { 6 } } { 12 }\)\(\frac { 2 \sqrt { 6 } } { 5 }\)\(\frac { 4 \sqrt { 3 } } { 25 }\)\(\frac { 25 } { 24 }\)
Question 4
View details
4 The matrices A and B are defined as follows: $$\begin{aligned} & \mathbf { A } = \left[ \begin{array} { l l } x + 1 & 2
x + 2 & - 3 \end{array} \right]
& \mathbf { B } = \left[ \begin{array} { c c } x - 4 & x - 2
0 & - 2 \end{array} \right] \end{aligned}$$ Show that there is a value of \(x\) for which \(\mathbf { A B } = k \mathbf { I }\), where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix and \(k\) is an integer to be found.
Question 5
View details
5 Solve the inequality $$\frac { 2 x + 3 } { x - 1 } \leq x + 5$$
Question 6
View details
6 Find the sum of all the integers from 1 to 999 inclusive that are not square or cube numbers.
Question 7
View details
7 The diagram shows part of the graph of \(y = \cos ^ { - 1 } x\) The diagram shows part of the graph of \(y = \cos ^ { - 1 } x\)
\includegraphics[max width=\textwidth, alt={}, center]{b4ba8a08-333d-4efc-a0ed-14fef2d99410-07_689_958_358_539} The finite region enclosed by the graph of \(y = \cos ^ { - 1 } x\), the \(y\)-axis, the \(x\)-axis and the line \(x = 0.8\) is rotated by \(2 \pi\) radians about the \(x\)-axis. Use Simpson's rule with five ordinates to estimate the volume of the solid formed. Give your answer to four decimal places.
Question 8
View details
8
  1. \(\quad\) Factorise \(\left| \begin{array} { c c c } 2 a + b + x & x + b & x ^ { 2 } + b ^ { 2 }
    0 & a & - a ^ { 2 }
    a + b & b & b ^ { 2 } \end{array} \right|\) as fully as possible.
    8
  2. The matrix \(\mathbf { M }\) is defined by $$\mathbf { M } = \left[ \begin{array} { c c c } 13 + x & x + 3 & x ^ { 2 } + 9
    0 & 5 & - 25
    8 & 3 & 9 \end{array} \right]$$ Under the transformation represented by \(\mathbf { M }\), a solid of volume \(0.625 \mathrm {~m} ^ { 3 }\) becomes a solid of volume \(300 \mathrm {~m} ^ { 3 }\) Use your answer to part (a) to find the possible values of \(x\).
    Use \(\mathbf { C }\) to show that \(\cos \frac { \pi } { 12 }\) can be written in the form \(\frac { \sqrt { \sqrt { m } + n } } { 2 }\), where \(m\) and \(n\) are integers.
Question 10
View details
10 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 0 \quad u _ { n + 1 } = \frac { 5 } { 6 - u _ { n } }$$ Prove by induction that, for all integers \(n \geq 1\), $$u _ { n } = \frac { 5 ^ { n } - 5 } { 5 ^ { n } - 1 }$$
Question 11
View details
11
  1. Starting from the series given in the formulae booklet, show that the general term of the Maclaurin series for $$\frac { \sin x } { x } - \cos x$$ is $$( - 1 ) ^ { r + 1 } \frac { 2 r } { ( 2 r + 1 ) ! } x ^ { 2 r }$$ 11
  2. Show that $$\lim _ { x \rightarrow 0 } \left[ \frac { \frac { \sin x } { x } - \cos x } { 1 - \cos x } \right] = \frac { 2 } { 3 }$$
Question 12 6 marks
View details
12
  1. Given that \(I = \int _ { a } ^ { b } \mathrm { e } ^ { 2 t } \sin t \mathrm {~d} t\), show that $$I = \left[ q \mathrm { e } ^ { 2 t } \sin t + r \mathrm { e } ^ { 2 t } \cos t \right] _ { a } ^ { b }$$ where \(q\) and \(r\) are rational numbers to be found.
    [0pt] [6 marks]
    12
  2. A small object is initially at rest. The subsequent motion of the object is modelled by the differential equation $$\frac { \mathrm { d } v } { \mathrm {~d} t } + v = 5 \mathrm { e } ^ { t } \sin t$$ where \(v\) is the velocity at time \(t\).
    Find the speed of the object when \(t = 2 \pi\), giving your answer in exact form.
    13Charlotte is trying to solve this mathematical problem:
    Find the general solution of the differential equation \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \frac { \mathrm { d } y } { \mathrm {~d} x } - 2 y = 10 \mathrm { e } ^ { - 2 x }\)
    Charlotte's solution starts as follows:
    Particular integral: \(y = \lambda \mathrm { e } ^ { - 2 x }\)
    so \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 2 \lambda \mathrm { e } ^ { - 2 x }\)
    and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 4 \lambda \mathrm { e } ^ { - 2 x }\)
Question 13
View details
13
  1. Show that Charlotte's method will fail to find a particular integral for the differential equation.
    13
  2. Explain how Charlotte should have started her solution differently and find the general solution of the differential equation.
Question 14
View details
14 The diagram shows the polar curve \(C _ { 1 }\) with equation \(r = 2 \sin \theta\) The diagram also shows part of the polar curve \(C _ { 2 }\) with equation \(r = 1 + \cos 2 \theta\)
\includegraphics[max width=\textwidth, alt={}, center]{b4ba8a08-333d-4efc-a0ed-14fef2d99410-20_378_897_456_954} 14
  1. On the diagram above, complete the sketch of \(C _ { 2 }\) 14
  2. Show that the area of the region shaded in the diagram is equal to $$k \pi + m \alpha - \sin 2 \alpha + q \sin 4 \alpha$$ where \(\alpha = \sin ^ { - 1 } \left( \frac { \sqrt { 5 } - 1 } { 2 } \right)\), and \(k , m\) and \(q\) are rational numbers.
Question 15
View details
15 The points \(A ( 7,2,8 ) , B ( 7 , - 4,0 )\) and \(C ( 3,3.2,9.6 )\) all lie in the plane \(\Pi\). 15
  1. Find a Cartesian equation of the plane \(\Pi\).
    15
  2. The line \(L _ { 1 }\) has equation \(\mathbf { r } = \left[ \begin{array} { c } 5
    - 0.4
    4.8 \end{array} \right] + \mu \left[ \begin{array} { c } 15
    3
    4 \end{array} \right]\) 15
    1. Show that \(L _ { 1 }\) lies in the plane \(\Pi\).
      15
  3. (ii) Show that every point on \(L _ { 1 }\) is equidistant from \(B\) and \(C\).
    15
  4. The line \(L _ { 2 }\) lies in the plane \(\Pi\), and every point on \(L _ { 2 }\) is equidistant from \(A\) and \(B\).
    15
  5. The points \(A , B\) and \(C\) all lie on a circle \(G\). The point \(D\) is the centre of circle \(G\). Find the coordinates of \(D\).
    \includegraphics[max width=\textwidth, alt={}, center]{b4ba8a08-333d-4efc-a0ed-14fef2d99410-26_2488_1719_219_150}