4
\includegraphics[max width=\textwidth, alt={}, center]{137d2806-f45c-4121-8ee9-bf89580e1cca-3_906_1538_248_301}
The end \(A\) of a uniform \(\operatorname { rod } A B\), of mass \(4 m\) and length \(3 a\), is rigidly attached to a point on a uniform spherical shell, of mass \(\lambda m\) and radius \(3 a\). The end \(B\) of the rod is rigidly attached to a point on a uniform ring. The ring has centre \(O\), mass \(4 m\) and radius \(\frac { 1 } { 2 } a\). The ring and the rod are in the same vertical plane. The line \(O B A\), extended, passes through the centre of the spherical shell. \(B C\) is a diameter of the ring (see diagram). Show that the moment of inertia of this system, about a fixed horizontal axis through \(C\) perpendicular to the plane of the ring, is \(( 30 + 55 \lambda ) m a ^ { 2 }\).
Given that the system performs small oscillations of period \(2 \pi \sqrt { } \left( \frac { 5 a } { g } \right)\) about this axis, find the value of \(\lambda\).