OCR MEI Paper 3 (Paper 3) 2020 November

Question 1
View details
1 Find the value of \(\sum _ { r = 1 } ^ { 5 } 2 ^ { r } ( r - 1 )\).
Question 2
View details
2 The graph of \(y = | 1 - x | - 2\) is shown in Fig. 2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a13f7a05-e2d3-4354-a0c7-ef7283eff514-04_625_1102_794_242} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Determine the set of values of \(x\) for which \(| 1 - x | > 2\).
Question 3
View details
3 A particular phone battery will last 10 hours when it is first used. Every time it is recharged, it will only last \(98 \%\) of its previous time. Find the maximum total length of use for the battery.
Question 4
View details
4 Fig. 4 shows the regular octagon ABCDEFGH . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a13f7a05-e2d3-4354-a0c7-ef7283eff514-05_689_696_301_239} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} \(\overrightarrow { \mathrm { AB } } = \mathbf { i } , \overrightarrow { \mathrm { CD } } = \mathbf { j }\), where \(\mathbf { i }\) is a unit vector parallel to the \(x\)-axis and \(\mathbf { j }\) is a unit vector parallel to the \(y\)-axis. Find an exact expression for \(\overrightarrow { \mathrm { BC } }\) in terms of \(\mathbf { i }\) and \(\mathbf { j }\).
Question 5
View details
5 Fig. 5 shows part of the curve \(y = \operatorname { cosec } x\) together with the \(x\) - and \(y\)-axes. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a13f7a05-e2d3-4354-a0c7-ef7283eff514-06_732_625_317_244} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure}
  1. For the section of the curve which is shown in Fig. 5, write down
    1. the equations of the two vertical asymptotes,
    2. the coordinates of the minimum point.
  2. Show that the equation \(x = \operatorname { cosec } x\) has a root which lies between \(x = 1\) and \(x = 2\).
  3. Use the iteration \(\mathrm { x } _ { \mathrm { n } + 1 } = \operatorname { cosec } \left( \mathrm { x } _ { \mathrm { n } } \right)\), with \(x _ { 0 } = 1\), to find
    1. the values of \(x _ { 1 }\) and \(x _ { 2 }\), correct to 5 decimal places,
    2. this root of the equation, correct to 3 decimal places.
  4. There is another root of \(x = \operatorname { cosec } x\) which lies between \(x = 2\) and \(x = 3\). Determine whether the iteration \(\mathrm { x } _ { \mathrm { n } + 1 } = \operatorname { cosec } \left( \mathrm { x } _ { \mathrm { n } } \right)\) with \(x _ { 0 } = 2.5\) converges to this root.
  5. Sketch the staircase or cobweb diagram for the iteration, starting with \(x _ { 0 } = 2.5\), on the diagram in the Printed Answer Booklet.
Question 6
View details
6
    1. Write down the derivative of \(\mathrm { e } ^ { \mathrm { kx } }\), where \(k\) is a constant.
    2. A business has been running since 2009. They sell maths revision resources online. Give a reason why an exponential growth model might be suitable for the annual profits for the business. Fig. 6 shows the relationship between the annual profits of the business in thousands of pounds ( \(y\) ) and the time in years after \(2009 ( x )\). The graph of lny plotted against \(x\) is approximately a straight line. \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{a13f7a05-e2d3-4354-a0c7-ef7283eff514-07_1052_1157_751_242} \captionsetup{labelformat=empty} \caption{Fig. 6}
      \end{figure}
  1. Show that the straight line is consistent with a model of the form \(\mathbf { y } = \mathrm { Ae } ^ { \mathrm { kx } }\), where \(A\) and \(k\) are constants.
  2. Estimate the values of \(A\) and \(k\).
  3. Use the model to predict the profit in the year 2020.
  4. How reliable do you expect the prediction in part (d) to be? Justify your answer.
Question 7
View details
7
  1. Express \(\frac { 1 } { x } + \frac { 1 } { A - x }\) as a single fraction. The population of fish in a lake is modelled by the differential equation
    \(\frac { d x } { d t } = \frac { x ( 400 - x ) } { 400 }\)
    where \(x\) is the number of fish and \(t\) is the time in years.
    When \(t = 0 , x = 100\).
  2. In this question you must show detailed reasoning. Find the number of fish in the lake when \(t = 10\), as predicted by the model.
Question 8
View details
8
  1. The curve \(y = \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { 2 } }\) is shown in Fig. 8. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a13f7a05-e2d3-4354-a0c7-ef7283eff514-08_495_1058_1105_315} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
    1. Show that \(\frac { d ^ { 2 } y } { d x ^ { 2 } } = \frac { 20 x ^ { 2 } - 4 } { \left( 1 + x ^ { 2 } \right) ^ { 4 } }\).
    2. In this question you must show detailed reasoning. Find the set of values of \(x\) for which the curve is concave downwards.
  2. Use the substitution \(x = \tan \theta\) to find the exact value of \(\int _ { - 1 } ^ { 1 } \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } d x\). Answer all the questions.
    Section B (15 marks) The questions in this section refer to the article on the Insert. You should read the article before attempting the questions.
Question 9
View details
9
  1. Show that if \(a = 1\) and \(b > 1\) then \(\mathrm { a } ^ { \mathrm { b } } < \mathrm { b } ^ { \mathrm { a } }\).
  2. Find integer values of \(a\) and \(b\) with \(b > a > 1\) and \(\mathrm { a } ^ { \mathrm { b } }\) not greater than \(\mathrm { b } ^ { \mathrm { a } }\) (a counter example to the conjecture given in lines 7-8).
Question 10
View details
10 In this question you must show detailed reasoning.
Show that \(\int _ { \mathrm { e } } ^ { \pi } \frac { 1 } { x } \mathrm {~d} x = \ln \pi - 1\) as given in line 37.
Question 11
View details
11 Show that \(\mathrm { e } ^ { x }\) is an increasing function for all values of \(x\), as stated in line 39 .
Question 12
View details
12
  1. Show that the only stationary point on the curve \(\mathrm { y } = \frac { \ln \mathrm { x } } { \mathrm { x } }\) occurs where \(x = \mathrm { e }\), as given in line 45.
  2. Show that the stationary point is a maximum.
  3. It follows from part (b) that, for any positive number \(a\) with \(a \neq \mathrm { e }\),
    \(\frac { \ln \mathrm { e } } { \mathrm { e } } > \frac { \ln a } { a }\).
    Use this fact to show that \(\mathrm { e } ^ { a } > a ^ { \mathrm { e } }\).