OCR FP2 (Further Pure Mathematics 2) 2010 June

Question 1
View details
1 It is given that \(\mathrm { f } ( x ) = \tan ^ { - 1 } 2 x\) and \(\mathrm { g } ( x ) = p \tan ^ { - 1 } x\), where \(p\) is a constant. Find the value of \(p\) for which \(\mathrm { f } ^ { \prime } \left( \frac { 1 } { 2 } \right) = \mathrm { g } ^ { \prime } \left( \frac { 1 } { 2 } \right)\).
Question 2
View details
2 Given that the first three terms of the Maclaurin series for \(( 1 + \sin x ) \mathrm { e } ^ { 2 x }\) are identical to the first three terms of the binomial series for \(( 1 + a x ) ^ { n }\), find the values of the constants \(a\) and \(n\). (You may use appropriate results given in the List of Formulae (MF1).)
Question 3
View details
3 Use the substitution \(t = \tan \frac { 1 } { 2 } x\) to show that $$\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \frac { 1 } { 1 - \sin x } \mathrm {~d} x = 1 + \sqrt { 3 }$$
Question 4
View details
4
\includegraphics[max width=\textwidth, alt={}, center]{074597e7-5bb1-4249-9cfa-784974a6fd2b-2_947_1305_986_420} The diagram shows the curve with equation $$y = \frac { a x + b } { x + c }$$ where \(a , b\) and \(c\) are constants.
  1. Given that the asymptotes of the curve are \(x = - 1\) and \(y = - 2\) and that the curve passes through \(( 3,0 )\), find the values of \(a , b\) and \(c\).
  2. Sketch the curve with equation $$y ^ { 2 } = \frac { a x + b } { x + c }$$ for the values of \(a , b\) and \(c\) found in part (i). State the coordinates of any points where the curve crosses the axes, and give the equations of any asymptotes.
Question 5
View details
5 It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } } ( 1 - 2 x ) ^ { n } \mathrm { e } ^ { x } \mathrm {~d} x$$
  1. Prove that, for \(n \geqslant 1\), $$I _ { n } = 2 n I _ { n - 1 } - 1$$
  2. Find the exact value of \(I _ { 3 }\).
Question 6
View details
6
  1. Show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \sinh ^ { - 1 } x \right) = \frac { 1 } { \sqrt { x ^ { 2 } + 1 } }\).
  2. Given that \(y = \cosh \left( a \sinh ^ { - 1 } x \right)\), where \(a\) is a constant, show that $$\left( x ^ { 2 } + 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + x \frac { \mathrm {~d} y } { \mathrm {~d} x } - a ^ { 2 } y = 0$$
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{074597e7-5bb1-4249-9cfa-784974a6fd2b-3_531_1065_1208_539} The line \(y = x\) and the curve \(y = 2 \ln ( 3 x - 2 )\) meet where \(x = \alpha\) and \(x = \beta\), as shown in the diagram.
  1. Use the iteration \(x _ { n + 1 } = 2 \ln \left( 3 x _ { n } - 2 \right)\), with initial value \(x _ { 1 } = 5.25\), to find the value of \(\beta\) correct to 2 decimal places. Show all your working.
  2. With the help of a 'staircase' diagram, explain why this iteration will not converge to \(\alpha\), whatever value of \(x _ { 1 }\) (other than \(\alpha\) ) is used.
  3. Show that the equation \(x = 2 \ln ( 3 x - 2 )\) can be rewritten as \(x = \frac { 1 } { 3 } \left( \mathrm { e } ^ { \frac { 1 } { 2 } x } + 2 \right)\). Use the NewtonRaphson method, with \(\mathrm { f } ( x ) = \frac { 1 } { 3 } \left( \mathrm { e } ^ { \frac { 1 } { 2 } x } + 2 \right) - x\) and \(x _ { 1 } = 1.2\), to find \(\alpha\) correct to 2 decimal places. Show all your working.
  4. Given that \(x _ { 1 } = \ln 36\), explain why the Newton-Raphson method would not converge to a root of \(\mathrm { f } ( x ) = 0\).
Question 8
View details
8
  1. Using the definition of \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\), show that $$4 \cosh ^ { 3 } x - 3 \cosh x \equiv \cosh 3 x$$
  2. Use the substitution \(u = \cosh x\) to find, in terms of \(5 ^ { \frac { 1 } { 3 } }\), the real root of the equation $$20 u ^ { 3 } - 15 u - 13 = 0 .$$
Question 9
View details
9
\includegraphics[max width=\textwidth, alt={}, center]{074597e7-5bb1-4249-9cfa-784974a6fd2b-4_486_1097_696_523} The diagram shows the curve with equation \(y = \sqrt { 2 x + 1 }\) between the points \(A \left( - \frac { 1 } { 2 } , 0 \right)\) and \(B ( 4,3 )\).
  1. Find the area of the region bounded by the curve, the \(x\)-axis and the line \(x = 4\). Hence find the area of the region bounded by the curve and the lines \(O A\) and \(O B\), where \(O\) is the origin.
  2. Show that the curve between \(B\) and \(A\) can be expressed in polar coordinates as $$r = \frac { 1 } { 1 - \cos \theta } , \quad \text { where } \tan ^ { - 1 } \left( \frac { 3 } { 4 } \right) \leqslant \theta \leqslant \pi$$
  3. Deduce from parts (i) and (ii) that \(\int _ { \tan ^ { - 1 } \left( \frac { 3 } { 4 } \right) } ^ { \pi } \operatorname { cosec } ^ { 4 } \left( \frac { 1 } { 2 } \theta \right) \mathrm { d } \theta = 24\). {www.ocr.org.uk}) after the live examination series.
    If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1 GE.
    OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }