AQA FP1 (Further Pure Mathematics 1) 2011 June

Question 1
View details
1 A curve passes through the point \(( 2,3 )\) and satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 2 + x } }$$ Starting at the point \(( 2,3 )\), use a step-by-step method with a step length of 0.5 to estimate the value of \(y\) at \(x = 3\). Give your answer to four decimal places.
Question 2
View details
2 The equation $$4 x ^ { 2 } + 6 x + 3 = 0$$ has roots \(\alpha\) and \(\beta\).
  1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
  2. Show that \(\alpha ^ { 2 } + \beta ^ { 2 } = \frac { 3 } { 4 }\).
  3. Find an equation, with integer coefficients, which has roots $$3 \alpha - \beta \text { and } 3 \beta - \alpha$$
Question 3
View details
3 It is given that \(z = x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  1. Find, in terms of \(x\) and \(y\), the real and imaginary parts of $$( z - \mathrm { i } ) \left( z ^ { * } - \mathrm { i } \right)$$
  2. Given that $$( z - \mathrm { i } ) \left( z ^ { * } - \mathrm { i } \right) = 24 - 8 \mathrm { i }$$ find the two possible values of \(z\).
Question 4
View details
4 The variables \(x\) and \(Y\), where \(Y = \log _ { 10 } y\), are related by the equation $$Y = m x + c$$ where \(m\) and \(c\) are constants.
  1. Given that \(y = a b ^ { x }\), express \(a\) in terms of \(c\), and \(b\) in terms of \(m\).
  2. It is given that \(y = 12\) when \(x = 1\) and that \(y = 27\) when \(x = 5\). On the diagram below, draw a linear graph relating \(x\) and \(Y\).
  3. Use your graph to estimate, to two significant figures:
    1. the value of \(y\) when \(x = 3\);
    2. the value of \(a\).
      \includegraphics[max width=\textwidth, alt={}, center]{7441c4e6-5448-483b-b100-f8076e7e6cd8-3_976_1173_1110_484}
Question 5
View details
5
  1. Find the general solution of the equation $$\cos \left( 3 x - \frac { \pi } { 6 } \right) = \frac { \sqrt { 3 } } { 2 }$$ giving your answer in terms of \(\pi\).
  2. Use your general solution to find the smallest solution of this equation which is greater than \(5 \pi\).
Question 6
View details
6
  1. Expand \(( 5 + h ) ^ { 3 }\).
  2. A curve has equation \(y = x ^ { 3 } - x ^ { 2 }\).
    1. Find the gradient of the line passing through the point \(( 5,100 )\) and the point on the curve for which \(x = 5 + h\). Give your answer in the form $$p + q h + r h ^ { 2 }$$ where \(p , q\) and \(r\) are integers.
    2. Show how the answer to part (b)(i) can be used to find the gradient of the curve at the point \(( 5,100 )\). State the value of this gradient.
Question 7
View details
7 The matrix \(\mathbf { A }\) is defined by $$\mathbf { A } = \left[ \begin{array} { c c } - 1 & - \sqrt { 3 }
\sqrt { 3 } & - 1 \end{array} \right]$$
    1. Calculate the matrix \(\mathbf { A } ^ { 2 }\).
    2. Show that \(\mathbf { A } ^ { 3 } = k \mathbf { I }\), where \(k\) is an integer and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
  1. Describe the single geometrical transformation, or combination of two geometrical transformations, corresponding to each of the matrices:
    1. \(\mathrm { A } ^ { 3 }\);
    2. A.
Question 8
View details
8 A curve has equation \(y = \frac { 1 } { x ^ { 2 } - 4 }\).
    1. Write down the equations of the three asymptotes of the curve.
    2. Sketch the curve, showing the coordinates of any points of intersection with the coordinate axes.
  1. Hence, or otherwise, solve the inequality $$\frac { 1 } { x ^ { 2 } - 4 } < - 2$$
Question 9
View details
9 The diagram shows a parabola \(P\) which has equation \(y = \frac { 1 } { 8 } x ^ { 2 }\), and another parabola \(Q\) which is the image of \(P\) under a reflection in the line \(y = x\). The parabolas \(P\) and \(Q\) intersect at the origin and again at a point \(A\).
The line \(L\) is a tangent to both \(P\) and \(Q\).
\includegraphics[max width=\textwidth, alt={}, center]{7441c4e6-5448-483b-b100-f8076e7e6cd8-5_1015_1089_623_479}
    1. Find the coordinates of the point \(A\).
    2. Write down an equation for \(Q\).
    3. Give a reason why the gradient of \(L\) must be - 1 .
    1. Given that the line \(y = - x + c\) intersects the parabola \(P\) at two distinct points, show that $$c > - 2$$
    2. Find the coordinates of the points at which the line \(L\) touches the parabolas \(P\) and \(Q\).
      (No credit will be given for solutions based on differentiation.)