3
- 2
0
\end{array} \right) .$$
Show that \(\{ \mathbf { a } , \mathbf { b } , \mathbf { c } \}\) is a basis for \(\mathbb { R } ^ { 3 }\).
Express \(\mathbf { d }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\).
2 Show that the difference between the squares of consecutive integers is an odd integer.
Find the sum to \(n\) terms of the series
$$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots + \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } + \ldots$$
and deduce the sum to infinity of the series.
3 It is given that \(\phi ( n ) = 5 ^ { n } ( 4 n + 1 ) - 1\), for \(n = 1,2,3 , \ldots\). Prove, by mathematical induction, that \(\phi ( n )\) is divisible by 8 , for every positive integer \(n\).