CAIE FP1 (Further Pure Mathematics 1) 2014 June

Question 1
View details
1 The vectors \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) and \(\mathbf { d }\) in \(\mathbb { R } ^ { 3 }\) are given by $$\mathbf { a } = \left( \begin{array} { r }
Question 2
View details
2
- 1
1 \end{array} \right) , \quad \mathbf { b } = \left( \begin{array} { l } 1
1
1 \end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { r } 0
1
- 1 \end{array} \right) \quad \text { and } \quad \mathbf { d } = \left( \begin{array} { r }
Question 3
View details
3
- 2
0 \end{array} \right) .$$ Show that \(\{ \mathbf { a } , \mathbf { b } , \mathbf { c } \}\) is a basis for \(\mathbb { R } ^ { 3 }\). Express \(\mathbf { d }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\). 2 Show that the difference between the squares of consecutive integers is an odd integer. Find the sum to \(n\) terms of the series $$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots + \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } + \ldots$$ and deduce the sum to infinity of the series. 3 It is given that \(\phi ( n ) = 5 ^ { n } ( 4 n + 1 ) - 1\), for \(n = 1,2,3 , \ldots\). Prove, by mathematical induction, that \(\phi ( n )\) is divisible by 8 , for every positive integer \(n\).
Question 4
View details
4 The curve \(C\) has cartesian equation \(\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 2 a ^ { 2 } x y\), where \(a\) is a positive constant. Show that the polar equation of \(C\) is \(r ^ { 2 } = a ^ { 2 } \sin 2 \theta\). Sketch \(C\) for \(- \pi < \theta \leqslant \pi\). Find the area enclosed by one loop of \(C\).
Question 5
View details
5 State the sum of the series \(z + z ^ { 2 } + z ^ { 3 } + \ldots + z ^ { n }\), for \(z \neq 1\). By letting \(z = \cos \theta + \mathrm { i } \sin \theta\), show that $$\cos \theta + \cos 2 \theta + \cos 3 \theta + \ldots + \cos n \theta = \frac { \sin \frac { 1 } { 2 } n \theta } { \sin \frac { 1 } { 2 } \theta } \cos \frac { 1 } { 2 } ( n + 1 ) \theta$$ where \(\sin \frac { 1 } { 2 } \theta \neq 0\).
Question 6
View details
6 The curve \(C\) has parametric equations $$x = \mathrm { e } ^ { t } - 4 t + 3 , \quad y = 8 \mathrm { e } ^ { \frac { 1 } { 2 } t } , \quad \text { for } 0 \leqslant t \leqslant 2$$
  1. Find, in terms of e , the length of \(C\).
  2. Find, in terms of \(\pi\) and e , the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Question 7
View details
7 The curve \(C\) has parametric equations $$x = \sin t , \quad y = \sin 2 t , \quad \text { for } 0 \leqslant t \leqslant \pi .$$ Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) in terms of \(t\). Hence, or otherwise, find the coordinates of the stationary points on \(C\) and determine their nature.
Question 8
View details
8 It is given that \(\lambda\) is an eigenvalue of the non-singular square matrix \(\mathbf { A }\), with corresponding eigenvector
e. Show that \(\lambda ^ { - 1 }\) is an eigenvalue of \(\mathbf { A } ^ { - 1 }\) for which \(\mathbf { e }\) is a corresponding eigenvector. Deduce that \(\lambda + \lambda ^ { - 1 }\) is an eigenvalue of \(\mathbf { A } + \mathbf { A } ^ { - 1 }\). It is given that 1 is an eigenvalue of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 0 & 1
- 1 & 2 & 3
1 & 0 & 2 \end{array} \right)$$ Find a corresponding eigenvector. It is also given that \(\left( \begin{array} { l } 0
1
0 \end{array} \right)\) and \(\left( \begin{array} { l } 1
2
1 \end{array} \right)\) are eigenvectors of the matrix \(\mathbf { A }\). Find the corresponding eigenvalues.
Hence find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\left( \mathbf { A } + \mathbf { A } ^ { - 1 } \right) ^ { 3 } = \mathbf { P D P } \mathbf { P } ^ { - 1 }$$
Question 9
View details
9 Using the substitution \(u = \cos \theta\), or any other method, find \(\int \sin \theta \cos ^ { 2 } \theta d \theta\). It is given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { n } \theta \cos ^ { 2 } \theta \mathrm {~d} \theta\), for \(n \geqslant 0\). Show that, for \(n \geqslant 2\), $$I _ { n } = \frac { n - 1 } { n + 2 } I _ { n - 2 }$$ Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { 4 } \theta \cos ^ { 2 } \theta d \theta\).
Question 10
View details
10 Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 0.16 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 0.0064 x = 8.64 + 0.32 t$$ given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\). Show that, for large positive \(t , \frac { \mathrm {~d} x } { \mathrm {~d} t } \approx 50\).
Question 11 EITHER
View details
Express \(\frac { 2 x ^ { 2 } - x + 5 } { x ^ { 2 } - 1 }\) in the form \(2 + \frac { A } { x - 1 } + \frac { B } { x + 1 }\), where \(A\) and \(B\) are integers to be found. The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } - x + 5 } { x ^ { 2 } - 1 }\). Show that there are two distinct values of \(x\) for which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\). Sketch \(C\), stating the equations of the asymptotes and giving the coordinates of any points of intersection with the coordinate axes and with the asymptotes. You do not need to find the coordinates of the turning points.
Question 11 OR
View details
With respect to an origin \(O\), the point \(A\) has position vector \(4 \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k }\) and the plane \(\Pi _ { 1 }\) has equation $$\mathbf { r } = ( 4 + \lambda + 3 \mu ) \mathbf { i } + ( - 2 + 7 \lambda + \mu ) \mathbf { j } + ( 2 + \lambda - \mu ) \mathbf { k } ,$$ where \(\lambda\) and \(\mu\) are real. The point \(L\) is such that \(\overrightarrow { O L } = 3 \overrightarrow { O A }\) and \(\Pi _ { 2 }\) is the plane through \(L\) which is parallel to \(\Pi _ { 1 }\). The point \(M\) is such that \(\overrightarrow { A M } = 3 \overrightarrow { M L }\).
  1. Show that \(A\) is in \(\Pi _ { 1 }\).
  2. Find a vector perpendicular to \(\Pi _ { 2 }\).
  3. Find the position vector of the point \(N\) in \(\Pi _ { 2 }\) such that \(O N\) is perpendicular to \(\Pi _ { 2 }\).
  4. Show that the position vector of \(M\) is \(10 \mathbf { i } - 5 \mathbf { j } + 5 \mathbf { k }\) and find the perpendicular distance of \(M\) from the line through \(O\) and \(N\), giving your answer correct to 3 significant figures.