OCR M2 (Mechanics 2) 2007 June

Question 1
View details
1 A man drags a sack at constant speed in a straight line along horizontal ground by means of a rope attached to the sack. The rope makes an angle of \(35 ^ { \circ }\) with the horizontal and the tension in the rope is 40 N . Calculate the work done in moving the sack 100 m .
Question 2
View details
2 Calculate the range on a horizontal plane of a small stone projected from a point on the plane with speed \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of elevation of \(27 ^ { \circ }\).
Question 3
View details
3 A rocket of mass 250 kg is moving in a straight line in space. There is no resistance to motion, and the mass of the rocket is assumed to be constant. With its motor working at a constant rate of 450 kW the rocket's speed increases from \(100 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to \(150 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in a time \(t\) seconds.
  1. Calculate the value of \(t\).
  2. Calculate the acceleration of the rocket at the instant when its speed is \(120 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
Question 4
View details
4 A ball is projected from a point \(O\) on the edge of a vertical cliff. The horizontal and vertically upward components of the initial velocity are \(7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(21 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively. At time \(t\) seconds after projection the ball is at the point \(( x , y )\) referred to horizontal and vertically upward axes through \(O\). Air resistance may be neglected.
  1. Express \(x\) and \(y\) in terms of \(t\), and hence show that \(y = 3 x - \frac { 1 } { 10 } x ^ { 2 }\). The ball hits the sea at a point which is 25 m below the level of \(O\).
  2. Find the horizontal distance between the cliff and the point where the ball hits the sea.
Question 5
View details
5 A cyclist and her bicycle have a combined mass of 70 kg . The cyclist ascends a straight hill \(A B\) of constant slope, starting from rest at \(A\) and reaching a speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at \(B\). The level of \(B\) is 6 m above the level of \(A\). For the cyclist's motion from \(A\) to \(B\), find
  1. the increase in kinetic energy,
  2. the increase in gravitational potential energy. During the ascent the resistance to motion is constant and has magnitude 60 N . The work done by the cyclist in moving from \(A\) to \(B\) is 8000 J .
  3. Calculate the distance \(A B\).
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{9951c978-37e6-4d89-9fe3-c1e5e28b221e-3_670_613_274_767} A particle \(P\) of mass 0.3 kg is attached to one end of each of two light inextensible strings. The other end of the longer string is attached to a fixed point \(A\) and the other end of the shorter string is attached to a fixed point \(B\), which is vertically below \(A\). \(A P\) makes an angle of \(30 ^ { \circ }\) with the vertical and is 0.4 m long. \(P B\) makes an angle of \(60 ^ { \circ }\) with the vertical. The particle moves in a horizontal circle with constant angular speed and with both strings taut (see diagram). The tension in the string \(A P\) is 5 N . Calculate
  1. the tension in the string \(P B\),
  2. the angular speed of \(P\),
  3. the kinetic energy of \(P\).
Question 7
View details
7 Two small spheres \(A\) and \(B\), with masses 0.3 kg and \(m \mathrm {~kg}\) respectively, lie at rest on a smooth horizontal surface. \(A\) is projected directly towards \(B\) with speed \(6 \mathrm {~ms} ^ { - 1 }\) and hits \(B\). The direction of motion of \(A\) is reversed in the collision. The speeds of \(A\) and \(B\) after the collision are \(1 \mathrm {~ms} ^ { - 1 }\) and \(3 \mathrm {~ms} ^ { - 1 }\) respectively. The coefficient of restitution between \(A\) and \(B\) is \(e\).
  1. Show that \(m = 0.7\).
  2. Find \(e\). B continues to move at \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and strikes a vertical wall at right angles. The coefficient of restitution between \(B\) and the wall is \(f\).
  3. Find the range of values of \(f\) for which there will be a second collision between \(A\) and \(B\).
  4. Find, in terms of \(f\), the magnitude of the impulse that the wall exerts on \(B\).
  5. Given that \(f = \frac { 3 } { 4 }\), calculate the final speeds of \(A\) and \(B\), correct to 1 decimal place.
Question 8
View details
8 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9951c978-37e6-4d89-9fe3-c1e5e28b221e-4_451_481_274_833} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} An object consists of a uniform solid hemisphere of weight 40 N and a uniform solid cylinder of weight 5 N . The cylinder has height \(h \mathrm {~m}\). The solids have the same base radius 0.8 m and are joined so that the hemisphere's plane face coincides with one of the cylinder's faces. The centre of the common face is the point \(O\) (see Fig. 1). The centre of mass of the object lies inside the hemisphere and is at a distance of 0.2 m from \(O\).
  1. Show that \(h = 1.2\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9951c978-37e6-4d89-9fe3-c1e5e28b221e-4_620_1065_1297_541} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} One end of a light inextensible string is attached to a point on the circumference of the upper face of the cylinder. The string is horizontal and its other end is tied to a fixed point on a rough plane. The object rests in equilibrium on the plane with its axis of symmetry vertical. The plane makes an angle of \(30 ^ { \circ }\) with the horizontal (see Fig. 2). The tension in the string is \(T \mathrm {~N}\) and the frictional force acting on the object is \(F \mathrm {~N}\).
  2. By taking moments about \(O\), express \(F\) in terms of \(T\).
  3. Find another equation connecting \(T\) and \(F\). Hence calculate the tension and the frictional force.