OCR MEI M1 (Mechanics 1)

Question 1
View details
1 Fig. 1 shows the speed-time graph of a runner during part of his training. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{569e7c0e-7c33-47c9-b986-8587ea239f0a-1_1068_1586_319_273} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} For each of the following statements, say whether it is true or false. If it is false give a brief explanation.
(A) The graph shows that the runner finishes where he started.
(B) The runner's maximum speed is \(8 \mathrm {~ms} ^ { - 1 }\).
(C) At time 58 seconds, the runner is slowing down at a rate of \(1.6 \mathrm {~ms} ^ { - 2 }\).
(D) The runner travels 400 m altogether.
Question 2
View details
2 A train consists of a locomotive pulling 17 identical trucks.
The mass of the locomotive is 120 tonnes and the mass of each truck is 40 tonnes. The locomotive gives a driving force of 121000 N . The resistance to motion on each truck is \(R \mathrm {~N}\) and the resistance on the locomotive is \(5 R \mathrm {~N}\).
Initially the train is travelling on a straight horizontal track and its acceleration is \(0.11 \mathrm {~ms} ^ { - 2 }\).
  1. Show that \(R = 1500\).
  2. Find the tensions in the couplings between
    (A) the last two trucks,
    (B) the locomotive and the first truck. The train now comes to a place where the track goes up a straight, uniform slope at an angle \(\alpha\) with the horizontal, where \(\sin \alpha = \frac { 1 } { 80 }\). The driving force and the resistance forces remain the same as before.
  3. Find the magnitude and direction of the acceleration of the train. The train then comes to a straight uniform downward slope at an angle \(\beta\) to the horizontal.
    The driver of the train reduces the driving force to zero and the resistance forces remain the same as before. The train then travels at a constant speed down the slope.
  4. Find the value of \(\beta\).
Question 3
View details
3 A point P on a piece of machinery is moving in a vertical straight line. The displacement of P above ground level at time \(t\) seconds is \(y\) metres. The displacement-time graph for the motion during the time interval \(0 \leqslant t \leqslant 4\) is shown in Fig. 7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{569e7c0e-7c33-47c9-b986-8587ea239f0a-3_1020_1333_352_439} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Using the graph, determine for the time interval \(0 \leqslant t \leqslant 4\)
    (A) the greatest displacement of P above its position when \(t = 0\),
    (B) the greatest distance of P from its position when \(t = 0\),
    (C) the time interval in which P is moving downwards,
    (D) the times when P is instantaneously at rest. The displacement of P in the time interval \(0 \leqslant t \leqslant 3\) is given by \(y = - 4 t ^ { 2 } + 8 t + 12\).
  2. Use calculus to find expressions in terms of \(t\) for the velocity and for the acceleration of P in the interval \(0 \leqslant t \leqslant 3\).
  3. At what times does P have a speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the interval \(0 \leqslant t \leqslant 3\) ? In the time interval \(3 \leqslant t \leqslant 4 , \mathrm { P }\) has a constant acceleration of \(32 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). There is no sudden change in velocity when \(t = 3\).
  4. Find an expression in terms of \(t\) for the displacement of P in the interval \(3 \leqslant t \leqslant 4\).
Question 4
View details
4 The velocity-time graph shown in Fig. 1 represents the straight line motion of a toy car. All the lines on the graph are straight. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{569e7c0e-7c33-47c9-b986-8587ea239f0a-4_579_1319_381_449} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} The car starts at the point A at \(t = 0\) and in the next 8 seconds moves to a point B .
  1. Find the distance from A to B .
    \(T\) seconds after leaving A , the car is at a point C which is a distance of 10 m from B .
  2. Find the value of \(T\).
  3. Find the displacement from A to C .
Question 5
View details
5 Fig. 3 is a sketch of the velocity-time graph modelling the velocity of a sprinter at the start of a race. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{569e7c0e-7c33-47c9-b986-8587ea239f0a-5_575_1086_482_551} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. How can you tell from the sketch that the acceleration is not modelled as being constant for \(0 \leqslant t \leqslant 4\) ? The velocity of the sprinter, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), for the time interval \(0 \leqslant t \leqslant 4\) is modelled by the expression $$v = 3 t - \frac { 3 } { 8 } t ^ { 2 } .$$
  2. Find the acceleration that the model predicts for \(t = 4\) and comment on what this suggests about the running of the sprinter.
  3. Calculate the distance run by the sprinter from \(t = 1\) to \(t = 4\).
Question 6
View details
6 A car passes a point A travelling at \(10 \mathrm {~m} \mathrm {~s} { } ^ { 1 }\). Its motion over the next 45 seconds is modelled as follows.
  • The car's speed increases uniformly from \(10 \mathrm {~ms} { } ^ { 1 }\) to \(30 \mathrm {~ms} { } ^ { 1 }\) over the first 10 s .
  • Its speed then increases uniformly to \(40 \mathrm {~m} \mathrm {~s} { } ^ { 1 }\) over the next 15 s .
  • The car then maintains this speed for a further 20 s at which time it reaches the point B .
    1. Sketch a speed-time graph to represent this motion.
    2. Calculate the distance from A to B .
    3. When it reaches the point B , the car is brought uniformly to rest in \(T\) seconds. The total distance from A is now 1700 m . Calculate the value of \(T\).