OCR MEI C4 (Core Mathematics 4)

Question 1
View details
1 With respect to cartesian coordinates Oxyz, a laser beam ABC is fired from the point \(\mathrm { A } ( 1,2,4 )\), and is reflected at point B off the plane with equation \(x + 2 y - 3 z = 0\), as shown in Fig. 8. \(\mathrm { A } ^ { \prime }\) is the point \(( 2,4,1 )\), and \(M\) is the midpoint of \(\mathrm { AA } ^ { \prime }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b46db958-aa88-47fb-8db3-786472791577-1_562_716_464_650} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that \(\mathrm { AA } ^ { \prime }\) is perpendicular to the plane \(x + 2 y - 3 z = 0\), and that M lies in the plane. The vector equation of the line AB is \(\mathbf { r } = \left( \begin{array} { l } 1
    2
    4 \end{array} \right) + \lambda \left( \begin{array} { r } 1
    - 1
    2 \end{array} \right)\).
  2. Find the coordinates of B , and a vector equation of the line \(\mathrm { A } ^ { \prime } \mathrm { B }\).
  3. Given that \(\mathrm { A } ^ { \prime } \mathrm { BC }\) is a straight line, find the angle \(\theta\).
  4. Find the coordinates of the point where BC crosses the Oxz plane (the plane containing the \(x\) - and \(z\)-axes)
Question 2
View details
2 A piece of cloth ABDC is attached to the tops of vertical poles \(\mathrm { AE } , \mathrm { BF } , \mathrm { DG }\) and CH , where \(\mathrm { E } , \mathrm { F } , \mathrm { G }\) and H are at ground level (see Fig. 7). Coordinates are as shown, with lengths in metres. The length of pole DG is \(k\) metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b46db958-aa88-47fb-8db3-786472791577-2_916_1255_464_397} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Write down the vectors \(\overrightarrow { \mathrm { AB } }\) and \(\overrightarrow { \mathrm { AC } }\). Hence calculate the angle BAC .
  2. Verify that the equation of the plane ABC is \(x + y - 2 z + d = 0\), where \(d\) is a constant to be determined. Calculate the acute angle the plane makes with the horizontal plane.
  3. Given that \(\mathrm { A } , \mathrm { B } , \mathrm { D }\) and C are coplanar, show that \(k = 3\). Hence show that ABDC is a trapezium, and find the ratio of CD to AB .
Question 3 9 marks
View details
3 A straight pipeline AB passes through a mountain. With respect to axes \(\mathrm { O } x y z\), with \(\mathrm { O } x\) due East, Oy due North and \(\mathrm { O } z\) vertically upwards, A has coordinates \(( - 200,100,0 )\) and B has coordinates \(( 100,200,100 )\), where units are metres.
  1. Verify that \(\left. \overrightarrow { \mathrm { AB } } = \begin{array} { l } 300
    100
    100 \end{array} \right)\) and find the length of the pipeline.
    [0pt] [3]
  2. Write down a vector equation of the line AB , and calculate the angle it makes with the vertical.
    [0pt] [6]
    A thin flat layer of hard rock runs through the mountain. The equation of the plane containing this layer is \(x + 2 y + 3 z = 320\).
  3. Find the coordinates of the point where the pipeline meets the layer of rock.
  4. By calculating the angle between the line AB and the normal to the plane of the layer, find the angle at which the pipeline cuts through the layer.
Question 4
View details
4 When a light ray passes from air to glass, it is deflected through an angle. The light ray ABC starts at point \(\mathrm { A } ( 1,2,2 )\), and enters a glass object at point \(\mathrm { B } ( 0,0,2 )\). The surface of the glass object is a plane with normal vector \(\mathbf { n }\). Fig. 7 shows a cross-section of the glass object in the plane of the light ray and \(\mathbf { n }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b46db958-aa88-47fb-8db3-786472791577-4_689_812_341_662} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the vector \(\overrightarrow { \mathrm { AB } }\) and a vector equation of the line AB . The surface of the glass object is a plane with equation \(x + z = 2\). AB makes an acute angle \(\theta\) with the normal to this plane.
  2. Write down the normal vector \(\mathbf { n }\), and hence calculate \(\theta\), giving your answer in degrees. The line BC has vector equation \(\mathbf { r } = \left( \begin{array} { l } 0
    0
    2 \end{array} \right) + \mu \left( \begin{array} { l } - 2
    - 2
    - 1 \end{array} \right)\). This line makes an acute angle \(\phi\) with the
    normal to the plane. normal to the plane.
  3. Show that \(\phi = 45 ^ { \circ }\).
  4. Snell's Law states that \(\sin \theta = k \sin \phi\), where \(k\) is a constant called the refractive index. Find \(k\). The light ray leaves the glass object through a plane with equation \(x + z = - 1\). Units are centimetres.
  5. Find the point of intersection of the line BC with the plane \(x + z = - 1\). Hence find the distance the light ray travels through the glass object.