OCR MEI C4 (Core Mathematics 4)

Question 1
View details
1 A curve has parametric equations \(x = \sec \theta , y = 2 \tan \theta\).
  1. Given that the derivative of \(\sec \theta\) is \(\sec \theta \tan \theta\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 \operatorname { cosec } \theta\).
  2. Verify that the cartesian equation of the curve is \(y ^ { 2 } = 4 x ^ { 2 } - 4\). Fig. 5 shows the region enclosed by the curve and the line \(x = 2\). This region is rotated through \(180 ^ { \circ }\) about the \(x\)-axis. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1e788cb0-36b0-42a9-9e0c-077022d410ae-1_556_867_580_588} \captionsetup{labelformat=empty} \caption{Fig. 5}
    \end{figure}
  3. Find the volume of revolution produced, giving your answer in exact form.
Question 2
View details
2 Show that the equation \(\operatorname { cosec } x + 5 \cot x = 3 \sin x\) may be rearranged as $$3 \cos ^ { 2 } x + 5 \cos x - 2 = 0$$ Hence solve the equation for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\), giving your answers to 1 decimal place.
Question 3
View details
3 Using appropriate right-angled triangles, show that \(\tan 45 ^ { \circ } = 1\) and \(\tan 30 ^ { \circ } = \frac { 1 } { \sqrt { 3 } }\).
Hence show that \(\tan 75 ^ { \circ } = 2 + \sqrt { 3 }\).
Question 4
View details
4 Prove that \(\sec ^ { 2 } \theta + \operatorname { cosec } ^ { 2 } \theta = \sec ^ { 2 } \theta \operatorname { cosec } ^ { 2 } \theta\).
Question 5
View details
5 Solve the equation \(\operatorname { cosec } ^ { 2 } \theta = 1 + 2 \cot \theta\), for \(- 180 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
Question 6
View details
6 Given that \(\operatorname { cosec } ^ { 2 } \theta - \cot \theta = 3\), show that \(\cot ^ { 2 } \theta - \cot \theta - 2 = 0\).
Hence solve the equation \(\operatorname { cosec } ^ { 2 } \theta - \cot \theta = 3\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
Question 7
View details
7 Given that \(x = 2 \sec \theta\) and \(y = 3 \tan \theta\), show that \(\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 9 } = 1\).
Question 8
View details
8 Solve the equation $$\sec ^ { 2 } \theta = 4 , \quad 0 \leqslant \theta \leqslant \pi ,$$ giving your answers in terms of \(\pi\).