CAIE P3 (Pure Mathematics 3) 2005 November

Question 1
View details
1 Given that \(a\) is a positive constant, solve the inequality $$| x - 3 a | > | x - a |$$
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{9275a3ed-8820-481b-9fc8-28c21b81dbed-2_559_789_513_678} Two variable quantities \(x\) and \(y\) are related by the equation \(y = A x ^ { n }\), where \(A\) and \(n\) are constants. The diagram shows the result of plotting \(\ln y\) against \(\ln x\) for four pairs of values of \(x\) and \(y\). Use the diagram to estimate the values of \(A\) and \(n\).
Question 3
View details
3 The equation of a curve is \(y = x + \cos 2 x\). Find the \(x\)-coordinates of the stationary points of the curve for which \(0 \leqslant x \leqslant \pi\), and determine the nature of each of these stationary points.
Question 4
View details
4 The equation \(x ^ { 3 } - x - 3 = 0\) has one real root, \(\alpha\).
  1. Show that \(\alpha\) lies between 1 and 2 . Two iterative formulae derived from this equation are as follows: $$\begin{aligned} & x _ { n + 1 } = x _ { n } ^ { 3 } - 3
    & x _ { n + 1 } = \left( x _ { n } + 3 \right) ^ { \frac { 1 } { 3 } } \end{aligned}$$ Each formula is used with initial value \(x _ { 1 } = 1.5\).
  2. Show that one of these formulae produces a sequence which fails to converge, and use the other formula to calculate \(\alpha\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 5
View details
5 By expressing \(8 \sin \theta - 6 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), solve the equation $$8 \sin \theta - 6 \cos \theta = 7$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 6
View details
6
  1. Use the substitution \(x = \sin ^ { 2 } \theta\) to show that $$\int \sqrt { } \left( \frac { x } { 1 - x } \right) \mathrm { d } x = \int 2 \sin ^ { 2 } \theta \mathrm {~d} \theta$$
  2. Hence find the exact value of $$\left. \int _ { 0 } ^ { \frac { 1 } { 4 } } \sqrt { ( } \frac { x } { 1 - x } \right) \mathrm { d } x$$
Question 7
View details
7 The equation \(2 x ^ { 3 } + x ^ { 2 } + 25 = 0\) has one real root and two complex roots.
  1. Verify that \(1 + 2 \mathrm { i }\) is one of the complex roots.
  2. Write down the other complex root of the equation.
  3. Sketch an Argand diagram showing the point representing the complex number \(1 + 2 \mathrm { i }\). Show on the same diagram the set of points representing the complex numbers \(z\) which satisfy $$| z | = | z - 1 - 2 \mathrm { i } |$$
Question 8
View details
8 In a certain chemical reaction the amount, \(x\) grams, of a substance present is decreasing. The rate of decrease of \(x\) is proportional to the product of \(x\) and the time, \(t\) seconds, since the start of the reaction. Thus \(x\) and \(t\) satisfy the differential equation $$\frac { \mathrm { d } x } { \mathrm {~d} t } = - k x t$$ where \(k\) is a positive constant. At the start of the reaction, when \(t = 0 , x = 100\).
  1. Solve this differential equation, obtaining a relation between \(x , k\) and \(t\).
  2. 20 seconds after the start of the reaction the amount of substance present is 90 grams. Find the time after the start of the reaction at which the amount of substance present is 50 grams.
Question 9
View details
9
  1. Express \(\frac { 3 x ^ { 2 } + x } { ( x + 2 ) \left( x ^ { 2 } + 1 \right) }\) in partial fractions.
  2. Hence obtain the expansion of \(\frac { 3 x ^ { 2 } + x } { ( x + 2 ) \left( x ^ { 2 } + 1 \right) }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
Question 10
View details
10 The straight line \(l\) passes through the points \(A\) and \(B\) with position vectors $$2 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } \quad \text { and } \quad \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k }$$ respectively. This line intersects the plane \(p\) with equation \(x - 2 y + 2 z = 6\) at the point \(C\).
  1. Find the position vector of \(C\).
  2. Find the acute angle between \(l\) and \(p\).
  3. Show that the perpendicular distance from \(A\) to \(p\) is equal to 2 .