CAIE P3 (Pure Mathematics 3) 2010 June

Question 1
View details
1 Solve the inequality \(| x + 3 a | > 2 | x - 2 a |\), where \(a\) is a positive constant.
Question 2
View details
2 Solve the equation $$\sin \theta = 2 \cos 2 \theta + 1$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 3
View details
3 The variables \(x\) and \(y\) satisfy the equation \(x ^ { n } y = C\), where \(n\) and \(C\) are constants. When \(x = 1.10\), \(y = 5.20\), and when \(x = 3.20 , y = 1.05\).
  1. Find the values of \(n\) and \(C\).
  2. Explain why the graph of \(\ln y\) against \(\ln x\) is a straight line.
Question 4
View details
4
  1. Using the expansions of \(\cos ( 3 x - x )\) and \(\cos ( 3 x + x )\), prove that $$\frac { 1 } { 2 } ( \cos 2 x - \cos 4 x ) \equiv \sin 3 x \sin x$$
  2. Hence show that $$\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 3 } \pi } \sin 3 x \sin x \mathrm {~d} x = \frac { 1 } { 8 } \sqrt { } 3$$
Question 5
View details
5 Given that \(y = 0\) when \(x = 1\), solve the differential equation $$x y \frac { \mathrm {~d} y } { \mathrm {~d} x } = y ^ { 2 } + 4 ,$$ obtaining an expression for \(y ^ { 2 }\) in terms of \(x\).
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{a74e4ddf-d254-45f3-bd9a-adf7cd53b3a6-3_380_641_258_751} The diagram shows a semicircle \(A C B\) with centre \(O\) and radius \(r\). The angle \(B O C\) is \(x\) radians. The area of the shaded segment is a quarter of the area of the semicircle.
  1. Show that \(x\) satisfies the equation $$x = \frac { 3 } { 4 } \pi - \sin x$$
  2. This equation has one root. Verify by calculation that the root lies between 1.3 and 1.5.
  3. Use the iterative formula $$x _ { n + 1 } = \frac { 3 } { 4 } \pi - \sin x _ { n }$$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 7
View details
7 The complex number \(2 + 2 \mathrm { i }\) is denoted by \(u\).
  1. Find the modulus and argument of \(u\).
  2. Sketch an Argand diagram showing the points representing the complex numbers 1, i and \(u\). Shade the region whose points represent the complex numbers \(z\) which satisfy both the inequalities \(| z - 1 | \leqslant | z - \mathrm { i } |\) and \(| z - u | \leqslant 1\).
  3. Using your diagram, calculate the value of \(| z |\) for the point in this region for which \(\arg z\) is least.
Question 8
View details
8
  1. Express \(\frac { 2 } { ( x + 1 ) ( x + 3 ) }\) in partial fractions.
  2. Using your answer to part (i), show that $$\left( \frac { 2 } { ( x + 1 ) ( x + 3 ) } \right) ^ { 2 } \equiv \frac { 1 } { ( x + 1 ) ^ { 2 } } - \frac { 1 } { x + 1 } + \frac { 1 } { x + 3 } + \frac { 1 } { ( x + 3 ) ^ { 2 } }$$
  3. Hence show that \(\int _ { 0 } ^ { 1 } \frac { 4 } { ( x + 1 ) ^ { 2 } ( x + 3 ) ^ { 2 } } \mathrm {~d} x = \frac { 7 } { 12 } - \ln \frac { 3 } { 2 }\).
Question 9
View details
9
\includegraphics[max width=\textwidth, alt={}, center]{a74e4ddf-d254-45f3-bd9a-adf7cd53b3a6-4_611_895_255_625} The diagram shows the curve \(y = \sqrt { } \left( \frac { 1 - x } { 1 + x } \right)\).
  1. By first differentiating \(\frac { 1 - x } { 1 + x }\), obtain an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\). Hence show that the gradient of the normal to the curve at the point \(( x , y )\) is \(( 1 + x ) \sqrt { } \left( 1 - x ^ { 2 } \right)\).
  2. The gradient of the normal to the curve has its maximum value at the point \(P\) shown in the diagram. Find, by differentiation, the \(x\)-coordinate of \(P\).
Question 10
View details
10 The lines \(l\) and \(m\) have vector equations $$\mathbf { r } = \mathbf { i } + \mathbf { j } + \mathbf { k } + s ( \mathbf { i } - \mathbf { j } + 2 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 4 \mathbf { i } + 6 \mathbf { j } + \mathbf { k } + t ( 2 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )$$ respectively.
  1. Show that \(l\) and \(m\) intersect.
  2. Calculate the acute angle between the lines.
  3. Find the equation of the plane containing \(l\) and \(m\), giving your answer in the form \(a x + b y + c z = d\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
    University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }