Edexcel C3 (Core Mathematics 3)

Question 1
View details
  1. The functions \(f\) and \(g\) are defined by
$$\begin{aligned} & f : x \rightarrow 2 - x ^ { 2 } , \quad x \in \mathbb { R } ,
& g : x \rightarrow \frac { 3 x } { 2 x - 1 } , \quad x \in \mathbb { R } , \quad x \neq \frac { 1 } { 2 } \end{aligned}$$
  1. Evaluate fg(2).
  2. Solve the equation \(\operatorname { gf } ( x ) = \frac { 1 } { 2 }\).
Question 2
View details
2. Giving your answers to 1 decimal place, solve the equation $$5 \tan ^ { 2 } 2 \theta - 13 \sec 2 \theta = 1 ,$$ for \(\theta\) in the interval \(0 \leq \theta \leq 360 ^ { \circ }\).
Question 3
View details
3. (a) Simplify $$\frac { 2 x ^ { 2 } + 3 x - 9 } { 2 x ^ { 2 } - 7 x + 6 }$$ (b) Solve the equation $$\ln \left( 2 x ^ { 2 } + 3 x - 9 \right) = 2 + \ln \left( 2 x ^ { 2 } - 7 x + 6 \right)$$ giving your answer in terms of e.
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3bd9d8a3-a324-4649-9357-392a48a4a1de-3_508_771_255_488} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the graph of \(y = \mathrm { f } ( x )\). The graph has a minimum at \(\left( \frac { \pi } { 2 } , - 1 \right)\), a maximum at \(\left( \frac { 3 \pi } { 2 } , - 5 \right)\) and an asymptote with equation \(x = \pi\).
  1. Showing the coordinates of any stationary points, sketch the graph of \(y = | \mathrm { f } ( x ) |\). Given that $$f : x \rightarrow a + b \operatorname { cosec } x , \quad x \in \mathbb { R } , \quad 0 < x < 2 \pi , \quad x \neq \pi ,$$
  2. find the values of the constants \(a\) and \(b\),
  3. find, to 2 decimal places, the \(x\)-coordinates of the points where the graph of \(y = \mathrm { f } ( x )\) crosses the \(x\)-axis.
Question 5
View details
5. The number of bacteria present in a culture at time \(t\) hours is modelled by the continuous variable \(N\) and the relationship $$N = 2000 \mathrm { e } ^ { k t } ,$$ where \(k\) is a constant. Given that when \(t = 3 , N = 18000\), find
  1. the value of \(k\) to 3 significant figures,
  2. how long it takes for the number of bacteria present to double, giving your answer to the nearest minute,
  3. the rate at which the number of bacteria is increasing when \(t = 3\).
Question 6
View details
6. (a) Use the derivative of \(\cos x\) to prove that $$\frac { \mathrm { d } } { \mathrm {~d} x } ( \sec x ) = \sec x \tan x$$ The curve \(C\) has the equation \(y = \mathrm { e } ^ { 2 x } \sec x , - \frac { \pi } { 2 } < x < \frac { \pi } { 2 }\).
(b) Find an equation for the tangent to \(C\) at the point where it crosses the \(y\)-axis.
(c) Find, to 2 decimal places, the \(x\)-coordinate of the stationary point of \(C\).
Question 7
View details
7. \(\quad f ( x ) = x ^ { 2 } - 2 x + 5 , x \in \mathbb { R } , x \geq 1\).
  1. Express \(\mathrm { f } ( x )\) in the form \(( x + a ) ^ { 2 } + b\), where \(a\) and \(b\) are constants.
  2. State the range of f.
  3. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
  4. Describe fully two transformations that would map the graph of \(y = \mathrm { f } ^ { - 1 } ( x )\) onto the graph of \(y = \sqrt { x } , x \geq 0\).
  5. Find an equation for the normal to the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point where \(x = 8\).
Question 8
View details
8. A curve has the equation \(y = \frac { \mathrm { e } ^ { 2 } } { x } + \mathrm { e } ^ { x } , \quad x \neq 0\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    [0pt]
  2. Show that the curve has a stationary point in the interval [1.3,1.4]. The point \(A\) on the curve has \(x\)-coordinate 2 .
  3. Show that the tangent to the curve at \(A\) passes through the origin. The tangent to the curve at \(A\) intersects the curve again at the point \(B\).
    The \(x\)-coordinate of \(B\) is to be estimated using the iterative formula $$x _ { n + 1 } = - \frac { 2 } { 3 } \sqrt { 3 + 3 x _ { n } \mathrm { e } ^ { x _ { n } - 2 } }$$ with \(x _ { 0 } = - 1\).
  4. Find \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\) to 7 significant figures and hence state the \(x\)-coordinate of \(B\) to 5 significant figures.