OCR MEI C2 (Core Mathematics 2)

Question 1
View details
1 Given that \(\sin \theta = \frac { \sqrt { 3 } } { 4 }\), find in surd form the possible values of \(\cos \theta\).
Question 2
View details
2
  1. Show that the equation \(\frac { \tan \theta } { \cos \theta } = 1\) may be rewritten as \(\sin \theta = 1 - \sin ^ { 2 } \theta\).
  2. Hence solve the equation \(\frac { \tan \theta } { \cos \theta } = 1\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 3
View details
3 Show that the equation \(4 \cos ^ { 2 } \theta = 1 + \sin \theta\) can be expressed as $$4 \sin ^ { 2 } \theta + \sin \theta - 3 = 0$$ Hence solve the equation for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 4
View details
4 Showing your method clearly, solve the equation $$5 \sin ^ { 2 } \theta = 5 + \cos \theta \quad \text { for } 0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ } .$$
Question 5
View details
5 You are given that \(\sin \theta = \frac { \sqrt { 2 } } { 3 }\) and that \(\theta\) is an acute angle. Find the exact value of \(\tan \theta\).
Question 6
View details
6 Solve the equation \(\sin 2 x = - 0.5\) for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
Question 7
View details
7 You are given that \(\tan \theta = \frac { 1 } { 2 }\) and the angle \(\theta\) is acute. Show, without using a calculator, that \(\cos ^ { 2 } \theta = \frac { 4 } { 5 }\).
Question 8
View details
8 Given that \(\cos \theta = \frac { 1 } { 3 }\) and \(\theta\) is acute, find the exact value of \(\tan \theta\).
Question 9
View details
9 Fig. 3 Beginning with the triangle shown in Fig. 3, prove that \(\sin 60 ^ { \circ } = \frac { \sqrt { 3 } } { 2 }\).
Question 10
View details
10
  1. Sketch the graph of \(y = \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    On the same axes, sketch the graph of \(y = \cos 2 x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\). Label each graph clearly.
  2. Solve the equation \(\cos 2 x = 0.5\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Question 11
View details
  1. Solve the equation \(\cos x = 0.4\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Describe the transformation which maps the graph of \(y = \cos x\) onto the graph of \(y = \cos 2 x\).
Question 12
View details
12
  1. Sketch the graph of \(y = \tan x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Solve the equation \(4 \sin x = 3 \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).