OCR MEI C2 (Core Mathematics 2) 2007 June

Question 1
View details
1
  1. State the exact value of \(\tan 300 ^ { \circ }\).
  2. Express \(300 ^ { \circ }\) in radians, giving your answer in the form \(k \pi\), where \(k\) is a fraction in its lowest terms.
Question 2
View details
2 Given that \(y = 6 x ^ { \frac { 3 } { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
Show, without using a calculator, that when \(x = 36\) the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) is \(\frac { 3 } { 4 }\).
Question 3
View details
3 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2bdf241f-4538-4227-ba00-fe843d1b3aca-2_830_1393_959_334} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} Fig. 3 shows sketches of three graphs, A, B and C. The equation of graph A is \(y = \mathrm { f } ( x )\). State the equation of
  1. graph B ,
  2. graph C.
Question 4
View details
4
  1. Find the second and third terms of the sequence defined by the following. $$\begin{aligned} t _ { n + 1 } & = 2 t _ { n } + 5
    t _ { 1 } & = 3 \end{aligned}$$
  2. Find \(\sum _ { k = 1 } ^ { 3 } k ( k + 1 )\).
Question 5
View details
5 A sector of a circle of radius 5 cm has area \(9 \mathrm {~cm} ^ { 2 }\).
Find, in radians, the angle of the sector.
Find also the perimeter of the sector.
Question 6
View details
6
  1. Write down the values of \(\log _ { a } 1\) and \(\log _ { a } a\), where \(a > 1\).
  2. Show that \(\log _ { a } x ^ { 10 } - 2 \log _ { a } \left( \frac { x ^ { 3 } } { 4 } \right) = 4 \log _ { a } ( 2 x )\).
Question 7
View details
7
  1. Sketch the graph of \(y = 3 ^ { x }\).
  2. Use logarithms to solve the equation \(3 ^ { x } = 20\). Give your answer correct to 2 decimal places.
Question 8
View details
8
  1. Show that the equation \(2 \cos ^ { 2 } \theta + 7 \sin \theta = 5\) may be written in the form $$2 \sin ^ { 2 } \theta - 7 \sin \theta + 3 = 0$$
  2. By factorising this quadratic equation, solve the equation for values of \(\theta\) between \(0 ^ { \circ }\) and \(180 ^ { \circ }\). Section B (36 marks)
Question 9
View details
9 The equation of a cubic curve is \(y = 2 x ^ { 3 } - 9 x ^ { 2 } + 12 x - 2\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that the tangent to the curve when \(x = 3\) passes through the point \(( - 1 , - 41 )\).
  2. Use calculus to find the coordinates of the turning points of the curve. You need not distinguish between the maximum and minimum.
  3. Sketch the curve, given that the only real root of \(2 x ^ { 3 } - 9 x ^ { 2 } + 12 x - 2 = 0\) is \(x = 0.2\) correct to 1 decimal place.
Question 10
View details
10 Fig. 10 shows the speed of a car, in metres per second, during one minute, measured at 10-second intervals. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2bdf241f-4538-4227-ba00-fe843d1b3aca-4_732_748_379_657} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure} The measured speeds are shown below.
Time \(( t\) seconds \()\)0102030405060
Speed \(\left( v \mathrm {~m} \mathrm {~s} ^ { - 1 } \right)\)28191411121622
  1. Use the trapezium rule with 6 strips to find an estimate of the area of the region bounded by the curve, the line \(t = 60\) and the axes. [This area represents the distance travelled by the car.]
  2. Explain why your calculation in part (i) gives an overestimate for this area. Use appropriate rectangles to calculate an underestimate for this area. The speed of the car may be modelled by \(v = 28 - t + 0.015 t ^ { 2 }\).
  3. Show that the difference between the value given by the model when \(t = 10\) and the measured value is less than \(3 \%\) of the measured value.
  4. According to this model, the distance travelled by the car is $$\int _ { 0 } ^ { 60 } \left( 28 - t + 0.015 t ^ { 2 } \right) \mathrm { d } t$$ Find this distance.
Question 11
View details
11
  1. André is playing a game where he makes piles of counters. He puts 3 counters in the first pile. Each successive pile he makes has 2 more counters in it than the previous one.
    1. How many counters are there in his sixth pile?
    2. André makes ten piles of counters. How many counters has he used altogether?
  2. In another game, played with an ordinary fair die and counters, Betty needs to throw a six to start. The probability \(\mathrm { P } _ { n }\) of Betty starting on her \(n\)th throw is given by $$P _ { n } = \frac { 1 } { 6 } \times \left( \frac { 5 } { 6 } \right) ^ { n - 1 }$$
    1. Calculate \(\mathrm { P } _ { 4 }\). Give your answer as a fraction.
    2. The values \(\mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } , \ldots\) form an infinite geometric progression. State the first term and the common ratio of this progression. Hence show that \(\mathrm { P } _ { 1 } + \mathrm { P } _ { 2 } + \mathrm { P } _ { 3 } + \ldots = 1\).
    3. Given that \(\mathrm { P } _ { n } < 0.001\), show that \(n\) satisfies the inequality $$n > \frac { \log _ { 10 } 0.006 } { \log _ { 10 } \left( \frac { 5 } { 6 } \right) } + 1$$ Hence find the least value of \(n\) for which \(\mathrm { P } _ { n } < 0.001\).