OCR MEI C1 (Core Mathematics 1)

Question 1
View details
1 Express \(5 x ^ { 2 } + 15 x + 12\) in the form \(a ( x + b ) ^ { 2 } + c\).
Hence state the minimum value of \(y\) on the curve \(y = 5 x ^ { 2 } + 15 x + 12\).
Question 2
View details
2 You are given that \(\mathrm { f } ( x ) = 2 x ^ { 3 } - 3 x ^ { 2 } - 23 x + 12\).
  1. Show that \(x = - 3\) is a root of \(\mathrm { f } ( x ) = 0\) and hence factorise \(\mathrm { f } ( x )\) fully.
  2. Sketch the curve \(y = \mathrm { f } ( x )\).
  3. Find the \(x\)-coordinates of the points where the line \(y = 4 x + 12\) intersects \(y = \mathrm { f } ( x )\).
Question 3 9 marks
View details
3 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6be6c0b0-76b7-49c0-bf1b-dc6f8f79981b-2_836_906_361_675} \captionsetup{labelformat=empty} \caption{Fig. 12}
\end{figure} Fig. 12 shows the graph of \(y = \frac { 4 } { x ^ { 2 } }\).
  1. On the copy of Fig. 12, draw accurately the line \(y = 2 x + 5\) and hence find graphically the three roots of the equation \(\frac { 4 } { x ^ { 2 } } = 2 x + 5\).
    [0pt] [3]
  2. Show that the equation you have solved in part (i) may be written as \(2 x ^ { 3 } + 5 x ^ { 2 } - 4 = 0\). Verify that \(x = - 2\) is a root of this equation and hence find, in exact form, the other two roots.
    [0pt] [6]
  3. By drawing a suitable line on the copy of Fig. 12, find the number of real roots of the equation \(x ^ { 3 } + 2 x ^ { 2 } - 4 = 0\).
  4. You are given that \(\mathrm { f } ( x ) = ( 2 x - 5 ) ( x - 1 ) ( x - 4 )\).
    (A) Sketch the graph of \(y = \mathrm { f } ( x )\).
    (B) Show that \(\mathrm { f } ( x ) = 2 x ^ { 3 } - 15 x ^ { 2 } + 33 x - 20\).
  5. You are given that \(\mathrm { g } ( x ) = 2 x ^ { 3 } - 15 x ^ { 2 } + 33 x - 40\).
    (A) Show that \(\mathrm { g } ( 5 ) = 0\).
    (B) Express \(\mathrm { g } ( x )\) as the product of a linear and quadratic factor.
    (C) Hence show that the equation \(\mathrm { g } ( x ) = 0\) has only one real root.
  6. Describe fully the transformation that maps \(y = \mathrm { f } ( x )\) onto \(y = \mathrm { g } ( x )\).