OCR C1 (Core Mathematics 1)

Question 1
View details
  1. Solve the equation
$$x ^ { 2 } - 4 x - 8 = 0$$ giving your answers in the form \(a + b \sqrt { 3 }\) where \(a\) and \(b\) are integers.
Question 2
View details
2. The curve \(C\) has the equation $$y = x ^ { 2 } + a x + b$$ where \(a\) and \(b\) are constants.
Given that the minimum point of \(C\) has coordinates \(( - 2,5 )\), find the values of \(a\) and \(b\).
Question 3
View details
3. (i) Solve the simultaneous equations $$\begin{aligned} & y = x ^ { 2 } - 6 x + 7
& y = 2 x - 9 \end{aligned}$$ (ii) Hence, describe the geometrical relationship between the curve \(y = x ^ { 2 } - 6 x + 7\) and the straight line \(y = 2 x - 9\).
Question 4
View details
4. (i) Evaluate $$\left( 36 ^ { \frac { 1 } { 2 } } + 16 ^ { \frac { 1 } { 4 } } \right) ^ { \frac { 1 } { 3 } }$$ (ii) Solve the equation $$3 x ^ { - \frac { 1 } { 2 } } - 4 = 0 .$$
Question 5
View details
  1. (i) Sketch on the same diagram the curve with equation \(y = ( x - 2 ) ^ { 2 }\) and the straight line with equation \(y = 2 x - 1\).
Label on your sketch the coordinates of any points where each graph meets the coordinate axes.
(ii) Find the set of values of \(x\) for which $$( x - 2 ) ^ { 2 } > 2 x - 1$$
Question 6
View details
  1. (i) Given that \(y = x ^ { \frac { 1 } { 3 } }\), show that the equation
$$2 x ^ { \frac { 1 } { 3 } } + 3 x ^ { - \frac { 1 } { 3 } } = 7$$ can be rewritten as $$2 y ^ { 2 } - 7 y + 3 = 0 .$$ (ii) Hence, solve the equation $$2 x ^ { \frac { 1 } { 3 } } + 3 x ^ { - \frac { 1 } { 3 } } = 7$$
Question 7
View details
  1. Given that
$$y = \sqrt { x } - \frac { 4 } { \sqrt { x } }$$
  1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\),
  3. show that $$4 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - y = 0 .$$
Question 8
View details
\begin{enumerate} \setcounter{enumi}{7} \item \(f ( x ) = 2 + 6 x ^ { 2 } - x ^ { 3 }\).
  1. Find the coordinates of the stationary points of the curve \(y = \mathrm { f } ( x )\).
  2. Determine whether each stationary point is a maximum or minimum point.
  3. Sketch the curve \(y = \mathrm { f } ( x )\).
  4. State the set of values of \(k\) for which the equation \(\mathrm { f } ( x ) = k\) has three solutions. \item The points \(P\) and \(Q\) have coordinates \(( 7,4 )\) and \(( 9,7 )\) respectively.
Question 9
View details
  1. Find an equation for the straight line \(l\) which passes through \(P\) and \(Q\). Give your answer in the form \(a x + b y + c = 0\), where \(a\), \(b\) and \(c\) are integers. \end{enumerate} The straight line \(m\) has gradient 8 and passes through the origin, \(O\).
  2. Write down an equation for \(m\). The lines \(l\) and \(m\) intersect at the point \(R\).
  3. Show that \(O P = O R\).
Question 10
View details
10.
\includegraphics[max width=\textwidth, alt={}, center]{af6fdbed-fcab-4db8-9cdf-fd049ce720fd-3_668_787_918_431} The diagram shows the circle \(C\) and the straight line \(l\).
The centre of \(C\) lies on the \(x\)-axis and \(l\) intersects \(C\) at the points \(A ( 2,4 )\) and \(B ( 8 , - 8 )\).
  1. Find the gradient of 1 .
  2. Find the coordinates of the mid-point of \(A B\).
  3. Find the coordinates of the centre of \(C\).
  4. Show that \(C\) has the equation $$x ^ { 2 } + y ^ { 2 } - 18 x + 16 = 0$$