Edexcel C1 (Core Mathematics 1)

Question 2
View details
2. Find the set of values of \(x\) for which $$( x - 1 ) ( x - 2 ) < 20$$
Question 3
View details
  1. The curve with equation \(y = \mathrm { f } ( x )\) passes through the point (8, 7).
Given that $$\mathrm { f } ^ { \prime } ( x ) = 4 x ^ { \frac { 1 } { 3 } } - 5$$ find \(\mathrm { f } ( x )\).
Question 4
View details
4. (a) Evaluate \(\left( 5 \frac { 4 } { 9 } \right) ^ { - \frac { 1 } { 2 } }\).
(b) Find the value of \(x\) such that $$\frac { 1 + x } { x } = \sqrt { 3 } ,$$ giving your answer in the form \(a + b \sqrt { 3 }\) where \(a\) and \(b\) are rational.
Question 5
View details
5. Given that $$y = x + 5 + \frac { 3 } { \sqrt { x } }$$
  1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. find \(\int y \mathrm {~d} x\).
Question 6
View details
6. $$f ( x ) = x ^ { \frac { 3 } { 2 } } - 8 x ^ { - \frac { 1 } { 2 } } .$$
  1. Evaluate f(3), giving your answer in its simplest form with a rational denominator.
  2. Solve the equation \(\mathrm { f } ( x ) = 0\), giving your answers in the form \(k \sqrt { 2 }\).
Question 7
View details
7. The straight line \(l _ { 1 }\) has gradient 2 and passes through the point with coordinates \(( 4 , - 5 )\).
  1. Find an equation for \(l _ { 1 }\) in the form \(y = m x + c\). The straight line \(l _ { 2 }\) is perpendicular to the line with equation \(3 x - y = 4\) and passes through the point with coordinates \(( 3,0 )\).
  2. Find an equation for \(l _ { 2 }\).
  3. Find the coordinates of the point where \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d05cfae5-1d1d-4c90-80df-2975b9481c82-3_522_844_1235_379} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the graph of \(y = \mathrm { f } ( x )\).
  1. Write down the number of solutions that exist for the equation
    1. \(\mathrm { f } ( x ) = 1\),
    2. \(\mathrm { f } ( x ) = - x\).
  2. Labelling the axes in a similar way, sketch on separate diagrams the graphs of
    1. \(\quad y = \mathrm { f } ( x - 2 )\),
    2. \(y = \mathrm { f } ( 2 x )\).
Question 9
View details
9. (a) Prove that the sum of the first \(n\) terms of an arithmetic series with first term \(a\) and common difference \(d\) is given by $$\frac { 1 } { 2 } n [ 2 a + ( n - 1 ) d ] .$$ A novelist begins writing a new book. She plans to write 16 pages during the first week, 18 during the second and so on, with the number of pages increasing by 2 each week. Find, according to her plan,
(b) how many pages she will write in the fifth week,
(c) the total number of pages she will write in the first five weeks.
(d) Using algebra, find how long it will take her to write the book if it has 250 pages.
Question 10
View details
10. The curve \(C\) has the equation \(y = \mathrm { f } ( x )\) where $$f ( x ) = ( x + 2 ) ^ { 3 }$$
  1. Sketch the curve \(C\), showing the coordinates of any points of intersection with the coordinate axes.
  2. Find f \({ } ^ { \prime } ( x )\). The straight line \(l\) is the tangent to \(C\) at the point \(P ( - 1,1 )\).
  3. Find an equation for \(l\). The straight line \(m\) is parallel to \(l\) and is also a tangent to \(C\).
  4. Show that \(m\) has the equation \(y = 3 x + 8\).