OCR C1 (Core Mathematics 1) 2015 June

Question 1
View details
1 Express \(\frac { 8 } { \sqrt { 3 } - 1 }\) in the form \(a \sqrt { 3 } + b\), where \(a\) and \(b\) are integers.
Question 2
View details
2
  1. Sketch the curve \(y = - \frac { 1 } { x }\).
  2. The curve \(y = - \frac { 1 } { x }\) is translated by 2 units parallel to the \(x\)-axis in the positive direction. State the equation of the transformed curve.
  3. Describe a transformation that transforms the curve \(y = - \frac { 1 } { x }\) to the curve \(y = - \frac { 1 } { 3 x }\).
Question 3
View details
3 Express each of the following in the form \(5 ^ { k }\).
  1. \(25 ^ { 4 }\)
  2. \(\frac { 1 } { \sqrt [ 4 ] { 5 } }\)
  3. \(( 5 \sqrt { 5 } ) ^ { 3 }\)
Question 4
View details
4 Solve the equation \(x ^ { \frac { 2 } { 3 } } - x ^ { \frac { 1 } { 3 } } - 6 = 0\).
Question 5
View details
5 The points \(A\) and \(B\) have coordinates \(( 2,1 )\) and \(( 5 , - 3 )\) respectively.
  1. Find the length of \(A B\).
  2. Find an equation of the line through the mid-point of \(A B\) which is perpendicular to \(A B\), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.
Question 6
View details
6 Solve the simultaneous equations $$2 x + y - 5 = 0 , \quad x ^ { 2 } - y ^ { 2 } = 3$$
Question 7
View details
7
  1. Given that \(\mathrm { f } ( x ) = \left( x ^ { 2 } + 3 \right) ( 5 - x )\), find \(\mathrm { f } ^ { \prime } ( x )\).
  2. Find the gradient of the curve \(y = x ^ { - \frac { 1 } { 3 } }\) at the point where \(x = - 8\).
Question 8
View details
8
  1. Sketch the curve \(y = 2 x ^ { 2 } - x - 3\), giving the coordinates of all points of intersection with the axes.
  2. Hence, or otherwise, solve the inequality \(2 x ^ { 2 } - x - 3 > 0\).
  3. Given that the equation \(2 x ^ { 2 } - x - 3 = k\) has no real roots, find the set of possible values of the constant \(k\).
Question 9
View details
9 The curve \(y = 2 x ^ { 3 } - a x ^ { 2 } + 8 x + 2\) passes through the point \(B\) where \(x = 4\).
  1. Given that \(B\) is a stationary point of the curve, find the value of the constant \(a\).
  2. Determine whether the stationary point \(B\) is a maximum point or a minimum point.
  3. Find the \(x\)-coordinate of the other stationary point of the curve.
Question 10
View details
10 A circle with centre \(C\) has equation \(x ^ { 2 } + y ^ { 2 } - 10 x + 4 y + 4 = 0\).
  1. Find the coordinates of \(C\) and the radius of the circle.
  2. Show that the tangent to the circle at the point \(P ( 8,2 )\) has equation \(3 x + 4 y = 32\).
  3. The circle meets the \(y\)-axis at \(Q\) and the tangent meets the \(y\)-axis at \(R\). Find the area of triangle \(P Q R\).