OCR C1 (Core Mathematics 1) 2006 January

Question 1
View details
1 Solve the equations
  1. \(x ^ { \frac { 1 } { 3 } } = 2\),
  2. \(10 ^ { \prime } = 1\),
  3. \(\left( y ^ { - 2 } \right) ^ { 2 } = \frac { 1 } { 81 }\).
Question 2
View details
2
  1. Simplify \(( 3 x + 1 ) ^ { 2 } - 2 ( 2 x - 3 ) ^ { 2 }\).
  2. Find the coefficient of \(x ^ { 3 }\) in the expansion of $$\left( 2 x ^ { 3 } - 3 x ^ { 2 } + 4 x - 3 \right) \left( x ^ { 2 } - 2 x + 1 \right)$$
Question 3
View details
3 Given that \(y = 3 x ^ { 5 } - \sqrt { x } + 15\), find
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
Question 4
View details
4
  1. Sketch the curve \(y = \frac { 1 } { x ^ { 2 } }\).
  2. Hence sketch the curve \(y = \frac { 1 } { ( x - 3 ) ^ { 2 } }\).
  3. Describe fully a transformation that transforms the curve \(y = \frac { 1 } { x ^ { 2 } }\) to the curve \(y = \frac { 2 } { x ^ { 2 } }\).
Question 5
View details
5
  1. Express \(x ^ { 2 } + 3 x\) in the form \(( x + a ) ^ { 2 } + b\).
  2. Express \(y ^ { 2 } - 4 y - \frac { 11 } { 4 }\) in the form \(( y + p ) ^ { 2 } + q\). A circle has equation \(x ^ { 2 } + y ^ { 2 } + 3 x - 4 y - \frac { 11 } { 4 } = 0\).
  3. Write down the coordinates of the centre of the circle.
  4. Find the radius of the circle.
Question 6
View details
6
  1. Find the coordinates of the stationary points on the curve \(y = x ^ { 3 } - 3 x ^ { 2 } + 4\).
  2. Determine whether each stationary point is a maximum point or a minimum point.
  3. For what values of \(x\) does \(x ^ { 3 } - 3 x ^ { 2 } + 4\) increase as \(x\) increases?
Question 7
View details
7
  1. Solve the equation \(x ^ { 2 } - 8 x + 11 = 0\), giving your answers in simplified surd form.
  2. Hence sketch the curve \(y = x ^ { 2 } - 8 x + 11\), labelling the points where the curve crosses the axes.
  3. Solve the equation \(y - 8 y ^ { \frac { 1 } { 2 } } + 11 = 0\), giving your answers in the form \(p \pm q \sqrt { 5 }\).
Question 8
View details
8
  1. Given that \(y = x ^ { 2 } - 5 x + 15\) and \(5 x - y = 10\), show that \(x ^ { 2 } - 10 x + 25 = 0\).
  2. Find the discriminant of \(x ^ { 2 } - 10 x + 25\).
  3. What can you deduce from the answer to part (ii) about the line \(5 x - y = 10\) and the curve \(y = x ^ { 2 } - 5 x + 15\) ?
  4. Solve the simultaneous equations $$y = x ^ { 2 } - 5 x + 15 \text { and } 5 x - y = 10$$
  5. Hence, or otherwise, find the equation of the normal to the curve \(y = x ^ { 2 } - 5 x + 15\) at the point \(( 5,15 )\), giving your answer in the form \(a x + b y = c\), where \(a , b\) and \(c\) are integers.
Question 9
View details
9 The points \(A , B\) and \(C\) have coordinates \(( 5,1 ) , ( p , 7 )\) and \(( 8,2 )\) respectively.
  1. Given that the distance between points \(A\) and \(B\) is twice the distance between points \(A\) and \(C\), calculate the possible values of \(p\).
  2. Given also that the line passing through \(A\) and \(B\) has equation \(y = 3 x - 14\), find the coordinates of the mid-point of \(A B\).