2 The continuous random variable \(H\) has cumulative distribution function given by
$$\mathrm { F } ( h ) = \left\{ \begin{array} { l r }
0 & h \leqslant 0
\frac { h ^ { 2 } } { 48 } & 0 < h \leqslant 4
\frac { h } { 6 } - \frac { 1 } { 3 } & 4 < h \leqslant 5
\frac { 3 } { 10 } h - \frac { h ^ { 2 } } { 75 } - \frac { 2 } { 3 } & 5 < h \leqslant d
1 & h > d
\end{array} \right.$$
where \(d\) is a constant.
- Show that \(2 d ^ { 2 } - 45 d + 250 = 0\)
- Find \(\mathrm { P } ( H < 1.5 \mid 1 < H < 4.5 )\)
- Find the probability density function \(\mathrm { f } ( h )\)
You may leave the limits of \(h\) in terms of \(d\) where necessary.