12
\includegraphics[max width=\textwidth, alt={}, center]{3986478a-062a-4bc6-bce2-85408b51a0b2-20_542_1003_260_539}
Th d ag am sw s th cn \& with equ tin \(y = x \left( x - \mathcal { P } ^ { 2 } \right.\). Th min mm \(\dot { \mathbf { p } } n\) n th cn \(\mathbf { t }\) s co dia tes \(( a , \emptyset )\) ad l \(x\)-co id a te of th max \(\mathrm { mm } \dot { \mathrm { p } } \quad \mathrm { n }\) is \(b , \mathrm { w } \mathbf { b }\) re \(a\) ad \(b\) are \(\mathrm { c } \mathbf { n }\) tan s .
- State the le \(6 a\).
- Calch ate th \& le 6 b.
- Fid b area 6 th sh d d eg n
- Th g ad en, \(\frac { \mathrm { dy } } { \mathrm { dx } } , 6\) th cn a sa min mm \& le \(m\).
Calch ate th le \(6 m\).
If B e th follw ig lin dpg to cm p ete th an wer(s) to ay q stin (s), th q stin \(\mathrm { m } \quad \mathbf { b } \quad \mathrm { r } ( \mathrm { s } )\) ms tb clearlys n n