CAIE P2 (Pure Mathematics 2) 2010 November

Question 1
View details
1 Solve the inequality \(| x + 1 | > | x - 4 |\).
Question 2
View details
2 Use logarithms to solve the equation \(5 ^ { x } = 2 ^ { 2 x + 1 }\), giving your answer correct to 3 significant figures.
Question 3
View details
3 Show that \(\int _ { 0 } ^ { 1 } \left( \mathrm { e } ^ { x } + 1 \right) ^ { 2 } \mathrm {~d} x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 } + 2 \mathrm { e } - \frac { 3 } { 2 }\).
Question 4
View details
4 The parametric equations of a curve are $$x = 1 + \ln ( t - 2 ) , \quad y = t + \frac { 9 } { t } , \quad \text { for } t > 2$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \left( t ^ { 2 } - 9 \right) ( t - 2 ) } { t ^ { 2 } }\).
  2. Find the coordinates of the only point on the curve at which the gradient is equal to 0 .
Question 5
View details
5 Solve the equation \(8 + \cot \theta = 2 \operatorname { cosec } ^ { 2 } \theta\), giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 6
View details
6 The curve with equation \(y = \frac { 6 } { x ^ { 2 } }\) intersects the line \(y = x + 1\) at the point \(P\).
  1. Verify by calculation that the \(x\)-coordinate of \(P\) lies between 1.4 and 1.6.
  2. Show that the \(x\)-coordinate of \(P\) satisfies the equation $$x = \sqrt { } \left( \frac { 6 } { x + 1 } \right)$$
  3. Use the iterative formula $$x _ { n + 1 } = \sqrt { } \left( \frac { 6 } { x _ { n } + 1 } \right)$$ with initial value \(x _ { 1 } = 1.5\), to determine the \(x\)-coordinate of \(P\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 7
View details
7 The polynomial \(3 x ^ { 3 } + 2 x ^ { 2 } + a x + b\), where \(a\) and \(b\) are constants, is denoted by \(\mathrm { p } ( x )\). It is given that \(( x - 1 )\) is a factor of \(\mathrm { p } ( x )\), and that when \(\mathrm { p } ( x )\) is divided by \(( x - 2 )\) the remainder is 10 .
  1. Find the values of \(a\) and \(b\).
  2. When \(a\) and \(b\) have these values, solve the equation \(\mathrm { p } ( x ) = 0\).
Question 8
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{dde12c57-5129-43ae-b385-9a8f21f51e49-3_566_787_255_680} The diagram shows the curve \(y = x \sin x\), for \(0 \leqslant x \leqslant \pi\). The point \(Q \left( \frac { 1 } { 2 } \pi , \frac { 1 } { 2 } \pi \right)\) lies on the curve.
  1. Show that the normal to the curve at \(Q\) passes through the point \(( \pi , 0 )\).
  2. Find \(\frac { \mathrm { d } } { \mathrm { d } x } ( \sin x - x \cos x )\).
  3. Hence evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x \sin x \mathrm {~d} x\).