4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cf960066-46b8-42a3-8a8b-d8deb76e7c70-06_736_725_258_607}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
The uniform lamina \(A B C D E F\) is a regular hexagon with centre \(O\) and sides of length 2 m , as shown in Figure 1.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cf960066-46b8-42a3-8a8b-d8deb76e7c70-06_574_723_1288_605}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
The triangles \(O A F\) and \(O E F\) are removed to form the uniform lamina \(O A B C D E\), shown in Figure 2.
- Find the distance of the centre of mass of \(O A B C D E\) from \(O\).
The lamina \(O A B C D E\) is freely suspended from \(E\) and hangs in equilibrium.
- Find the size of the angle between \(E O\) and the downward vertical.