Edexcel M2 (Mechanics 2) 2005 June

Question 1
View details
  1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N . The car moves with constant speed and the engine of the car is working at a rate of 21 kW .
    1. Find the speed of the car.
    The car moves up a hill inclined at an angle \(\alpha\) to the horizontal, where \(\sin \alpha = \frac { 1 } { 14 }\).
    The car's engine continues to work at 21 kW , and the resistance to motion from nongravitational forces remains of magnitude 600 N .
  2. Find the constant speed at which the car can move up the hill.
Question 2
View details
2. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{3847deb8-d86e-4254-828f-5d62f20c186f-03_378_652_294_630}
\end{figure} A thin uniform wire, of total length 20 cm , is bent to form a frame. The frame is in the shape of a trapezium \(A B C D\), where \(A B = A D = 4 \mathrm {~cm} , C D = 5 \mathrm {~cm}\), and \(A B\) is perpendicular to \(B C\) and \(A D\), as shown in Figure 1.
  1. Find the distance of the centre of mass of the frame from \(A B\). The frame has mass \(M\). A particle of mass \(k M\) is attached to the frame at \(C\). When the frame is freely suspended from the mid-point of \(B C\), the frame hangs in equilibrium with \(B C\) horizontal.
  2. Find the value of \(k\).
Question 3
View details
3.A particle \(P\) moves in a horizontal plane.At time \(t\) seconds,the position vector of \(P\) is \(\mathbf { r }\) metres relative to a fixed origin \(O\) ,and \(\mathbf { r }\) is given by $$\mathbf { r } = \left( 18 t - 4 t ^ { 3 } \right) \mathbf { i } + c t ^ { 2 } \mathbf { j } ,$$ where \(c\) is a positive constant.When \(t = 1.5\) ,the speed of \(P\) is \(15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) .Find
(a)the value of \(c\) , (b)the acceleration of \(P\) when \(t = 1.5\) . \(\mathbf { r }\) metres relative to a fixed origin \(O\) ,and \(\mathbf { r }\) is given by $$\begin{aligned} \mathbf { r } = \left( 18 t - 4 t ^ { 3 } \right) \mathbf { i } + c t ^ { 2 } \mathbf { j } ,
\text { where } c \text { is a positive constant.When } t = 1.5 \text { ,the speed of } P \text { is } 15 \mathrm {~m} \mathrm {~s} ^ { - 1 } \text { .Find } \end{aligned}$$ (a)the value of \(c\) , 3.A particle \(P\) moves in a horizontal plane.At time \(t\) seconds,the position vector of \(P\) is D啨
(b)the acceleration of \(P\) when \(t = 1.5\) .
Question 4
View details
4. A darts player throws darts at a dart board which hangs vertically. The motion of a dart is modelled as that of a particle moving freely under gravity. The darts move in a vertical plane which is perpendicular to the plane of the dart board. A dart is thrown horizontally with speed \(12.6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It hits the board at a point which is 10 cm below the level from which it was thrown.
  1. Find the horizontal distance from the point where the dart was thrown to the dart board. The darts player moves his position. He now throws a dart from a point which is at a horizontal distance of 2.5 m from the board. He throws the dart at an angle of elevation \(\alpha\) to the horizontal, where \(\tan \alpha = \frac { 7 } { 24 }\). This dart hits the board at a point which is at the same level as the point from which it was thrown.
  2. Find the speed with which the dart is thrown.
Question 5
View details
5. Two small spheres \(A\) and \(B\) have mass \(3 m\) and \(2 m\) respectively. They are moving towards each other in opposite directions on a smooth horizontal plane, both with speed \(2 u\), when they collide directly. As a result of the collision, the direction of motion of \(B\) is reversed and its speed is unchanged.
  1. Find the coefficient of restitution between the spheres. Subsequently, \(B\) collides directly with another small sphere \(C\) of mass \(5 m\) which is at rest. The coefficient of restitution between \(B\) and \(C\) is \(\frac { 3 } { 5 }\).
  2. Show that, after \(B\) collides with \(C\), there will be no further collisions between the spheres.
Question 6
View details
6. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{3847deb8-d86e-4254-828f-5d62f20c186f-09_442_689_292_632}
\end{figure} A uniform pole \(A B\), of mass 30 kg and length 3 m , is smoothly hinged to a vertical wall at one end \(A\). The pole is held in equilibrium in a horizontal position by a light rod CD. One end \(C\) of the rod is fixed to the wall vertically below \(A\). The other end \(D\) is freely jointed to the pole so that \(\angle A C D = 30 ^ { \circ }\) and \(A D = 0.5 \mathrm {~m}\), as shown in Figure 2. Find
  1. the thrust in the rod \(C D\),
  2. the magnitude of the force exerted by the wall on the pole at \(A\). The rod \(C D\) is removed and replaced by a longer light rod \(C M\), where \(M\) is the mid-point of \(A B\). The rod is freely jointed to the pole at \(M\). The pole \(A B\) remains in equilibrium in a horizontal position.
  3. Show that the force exerted by the wall on the pole at \(A\) now acts horizontally.
Question 7
View details
7. At a demolition site, bricks slide down a straight chute into a container. The chute is rough and is inclined at an angle of \(30 ^ { \circ }\) to the horizontal. The distance travelled down the chute by each brick is 8 m . A brick of mass 3 kg is released from rest at the top of the chute. When it reaches the bottom of the chute, its speed is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Find the potential energy lost by the brick in moving down the chute.
  2. By using the work-energy principle, or otherwise, find the constant frictional force acting on the brick as it moves down the chute.
  3. Hence find the coefficient of friction between the brick and the chute. Another brick of mass 3 kg slides down the chute. This brick is given an initial speed of \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at the top of the chute.
  4. Find the speed of this brick when it reaches the bottom of the chute.