CAIE P2 (Pure Mathematics 2) 2020 November

Question 1
View details
1 Given that $$\ln ( 2 x + 1 ) - \ln ( x - 3 ) = 2$$ find \(x\) in terms of e.
Question 2
View details
2 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = x ^ { 3 } + a x ^ { 2 } + b x + 16$$ where \(a\) and \(b\) are constants. It is given that \(( x + 2 )\) is a factor of \(\mathrm { p } ( x )\) and that the remainder is 72 when \(\mathrm { p } ( x )\) is divided by \(( x - 2 )\). Find the values of \(a\) and \(b\).
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{8beee722-7f86-454a-bc36-27e83f1483fd-04_684_455_260_845} The diagram shows the curve \(y = 2 + \mathrm { e } ^ { - 2 x }\). The curve crosses the \(y\)-axis at the point \(A\), and the point \(B\) on the curve has \(x\)-coordinate 1 . The shaded region is bounded by the curve and the line segment \(A B\). Find the exact area of the shaded region.
Question 4
View details
4
  1. Solve the equation \(| 2 x - 5 | = | x + 6 |\).
  2. Hence find the value of \(y\) such that \(\left| 2 ^ { 1 - y } - 5 \right| = \left| 2 ^ { - y } + 6 \right|\). Give your answer correct to 3 significant figures.
Question 5
View details
5 The sequence of values given by the iterative formula \(x _ { n + 1 } = \frac { 6 + 8 x _ { n } } { 8 + x _ { n } ^ { 2 } }\) with initial value \(x _ { 1 } = 2\) converges to \(\alpha\).
  1. Use the iterative formula to find the value of \(\alpha\) correct to 4 significant figures. Give the result of each iteration to 6 significant figures.
  2. State an equation satisfied by \(\alpha\) and hence determine the exact value of \(\alpha\).
Question 6
View details
6 It is given that \(3 \sin 2 \theta = \cos \theta\) where \(\theta\) is an angle such that \(0 ^ { \circ } < \theta < 90 ^ { \circ }\).
  1. Find the exact value of \(\sin \theta\).
  2. Find the exact value of \(\sec \theta\).
  3. Find the exact value of \(\cos 2 \theta\).
Question 7
View details
7 A curve is defined by the parametric equations $$x = 3 t - 2 \sin t , \quad y = 5 t + 4 \cos t$$ where \(0 \leqslant t \leqslant 2 \pi\). At each of the points \(P\) and \(Q\) on the curve, the gradient of the curve is \(\frac { 5 } { 2 }\).
  1. Show that the values of \(t\) at \(P\) and \(Q\) satisfy the equation \(10 \cos t - 8 \sin t = 5\).
  2. Express \(10 \cos t - 8 \sin t\) in the form \(R \cos ( t + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\). Give the exact value of \(R\) and the value of \(\alpha\) correct to 3 significant figures.
  3. Hence find the values of \(t\) at the points \(P\) and \(Q\).
Question 8
View details
8 A curve has equation \(y = f ( x )\) where \(f ( x ) = \frac { 4 x ^ { 3 } + 8 x - 4 } { 2 x - 1 }\).
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence find the coordinates of each of the stationary points of the curve \(y = \mathrm { f } ( x )\).
  2. Divide \(4 x ^ { 3 } + 8 x - 4\) by ( \(2 x - 1\) ), and hence find \(\int \mathrm { f } ( x ) \mathrm { d } x\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.