CAIE P1 (Pure Mathematics 1) 2017 November

Question 1
View details
1 A curve has equation \(y = 2 x ^ { \frac { 3 } { 2 } } - 3 x - 4 x ^ { \frac { 1 } { 2 } } + 4\). Find the equation of the tangent to the curve at the point \(( 4,0 )\).
Question 2
View details
2 A function f is defined by \(\mathrm { f } : x \mapsto x ^ { 3 } - x ^ { 2 } - 8 x + 5\) for \(x < a\). It is given that f is an increasing function. Find the largest possible value of the constant \(a\).
Question 3
View details
3
  1. A geometric progression has first term \(3 a\) and common ratio \(r\). A second geometric progression has first term \(a\) and common ratio \(- 2 r\). The two progressions have the same sum to infinity. Find the value of \(r\).
  2. The first two terms of an arithmetic progression are 15 and 19 respectively. The first two terms of a second arithmetic progression are 420 and 415 respectively. The two progressions have the same sum of the first \(n\) terms. Find the value of \(n\).
Question 4
View details
4 Machines in a factory make cardboard cones of base radius \(r \mathrm {~cm}\) and vertical height \(h \mathrm {~cm}\). The volume, \(V \mathrm {~cm} ^ { 3 }\), of such a cone is given by \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\). The machines produce cones for which \(h + r = 18\).
  1. Show that \(V = 6 \pi r ^ { 2 } - \frac { 1 } { 3 } \pi r ^ { 3 }\).
  2. Given that \(r\) can vary, find the non-zero value of \(r\) for which \(V\) has a stationary value and show that the stationary value is a maximum.
  3. Find the maximum volume of a cone that can be made by these machines.
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{5201a3d5-7733-4d10-9de5-0c2255e3ad60-08_446_844_260_648} The diagram shows an isosceles triangle \(A B C\) in which \(A C = 16 \mathrm {~cm}\) and \(A B = B C = 10 \mathrm {~cm}\). The circular arcs \(B E\) and \(B D\) have centres at \(A\) and \(C\) respectively, where \(D\) and \(E\) lie on \(A C\).
  1. Show that angle \(B A C = 0.6435\) radians, correct to 4 decimal places.
  2. Find the area of the shaded region.
Question 6
View details
6 The points \(A ( 1,1 )\) and \(B ( 5,9 )\) lie on the curve \(6 y = 5 x ^ { 2 } - 18 x + 19\).
  1. Show that the equation of the perpendicular bisector of \(A B\) is \(2 y = 13 - x\).
    The perpendicular bisector of \(A B\) meets the curve at \(C\) and \(D\).
  2. Find, by calculation, the distance \(C D\), giving your answer in the form \(\sqrt { } \left( \frac { p } { q } \right)\), where \(p\) and \(q\) are integers.
Question 7
View details
7

  1. \includegraphics[max width=\textwidth, alt={}, center]{5201a3d5-7733-4d10-9de5-0c2255e3ad60-12_499_568_267_826} The diagram shows part of the graph of \(y = a + b \sin x\). Find the values of the constants \(a\) and \(b\).
    1. Show that the equation $$( \sin \theta + 2 \cos \theta ) ( 1 + \sin \theta - \cos \theta ) = \sin \theta ( 1 + \cos \theta )$$ may be expressed as \(3 \cos ^ { 2 } \theta - 2 \cos \theta - 1 = 0\).
    2. Hence solve the equation $$( \sin \theta + 2 \cos \theta ) ( 1 + \sin \theta - \cos \theta ) = \sin \theta ( 1 + \cos \theta )$$ for \(- 180 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
Question 8
View details
8
  1. Relative to an origin \(O\), the position vectors of two points \(P\) and \(Q\) are \(\mathbf { p }\) and \(\mathbf { q }\) respectively. The point \(R\) is such that \(P Q R\) is a straight line with \(Q\) the mid-point of \(P R\). Find the position vector of \(R\) in terms of \(\mathbf { p }\) and \(\mathbf { q }\), simplifying your answer.
  2. The vector \(6 \mathbf { i } + a \mathbf { j } + b \mathbf { k }\) has magnitude 21 and is perpendicular to \(3 \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }\). Find the possible values of \(a\) and \(b\), showing all necessary working.
Question 9
View details
9 Functions f and g are defined for \(x > 3\) by $$\begin{aligned} & \mathrm { f } : x \mapsto \frac { 1 } { x ^ { 2 } - 9 }
& \mathrm {~g} : x \mapsto 2 x - 3 \end{aligned}$$
  1. Find and simplify an expression for \(\operatorname { gg } ( x )\).
  2. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\) and state the domain of \(\mathrm { f } ^ { - 1 }\).
  3. Solve the equation \(\operatorname { fg } ( x ) = \frac { 1 } { 7 }\).
Question 10
View details
10
\includegraphics[max width=\textwidth, alt={}, center]{5201a3d5-7733-4d10-9de5-0c2255e3ad60-18_401_584_264_776} The diagram shows part of the curve \(y = \frac { 1 } { 2 } \left( x ^ { 4 } - 1 \right)\), defined for \(x \geqslant 0\).
  1. Find, showing all necessary working, the area of the shaded region.
  2. Find, showing all necessary working, the volume obtained when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
  3. Find, showing all necessary working, the volume obtained when the shaded region is rotated through \(360 ^ { \circ }\) about the \(y\)-axis.