7
\includegraphics[max width=\textwidth, alt={}, center]{81411376-b926-4857-bc9b-ac85d7957f3d-3_327_1006_1037_573}
A light container has a vertical cross-section in the form of a trapezium. The container rests on a horizontal surface. Grain is poured into the container to a depth of \(y \mathrm {~m}\). As shown in the diagram, the cross-section \(A B C D\) of the grain is such that \(A B = 0.4 \mathrm {~m}\) and \(D C = ( 0.4 + 2 y ) \mathrm { m }\).
- When \(y = 0.3\), find the vertical height of the centre of mass of the grain above the base of the container.
- Find the value of \(y\) for which the container is about to topple.