CAIE M2 (Mechanics 2) 2015 June

Question 1
View details
1 A particle \(P\) of mass 0.6 kg is on the rough surface of a horizontal disc with centre \(O\). The distance \(O P\) is 0.4 m . The disc and \(P\) rotate with angular speed \(3 \mathrm { rad } \mathrm { s } ^ { - 1 }\) about a vertical axis which passes through \(O\). Find the magnitude of the frictional force which the disc exerts on the particle, and state the direction of this force.
Question 2
View details
2 One end of a light elastic string of natural length 0.5 m and modulus of elasticity 30 N is attached to a fixed point \(O\). The other end of the string is attached to a particle \(P\) which hangs in equilibrium vertically below \(O\), with \(O P = 0.8 \mathrm {~m}\).
  1. Show that the mass of \(P\) is 1.8 kg . The particle is pulled vertically downwards and released from rest from the point where \(O P = 1.2 \mathrm {~m}\).
  2. Find the speed of \(P\) at the instant when the string first becomes slack.
Question 3
View details
3 A triangular frame \(A B C\) consists of two uniform rigid rods each of length 0.8 m and weight 3 N , and a longer uniform rod of weight 4 N . The triangular frame has \(A B = B C\), and angle \(B A C =\) angle \(B C A = 30 ^ { \circ }\).
  1. Calculate the distance of the centre of mass of the frame from \(A C\).
    \includegraphics[max width=\textwidth, alt={}, center]{a03ad6c1-b4a3-4007-8d3b-ce289a998a55-2_722_335_1302_904} The vertex \(A\) of the frame is attached to a smooth hinge at a fixed point. The frame is held in equilibrium with \(A C\) vertical by a vertical force of magnitude \(F \mathrm {~N}\) applied to the frame at \(B\) (see diagram).
  2. Calculate \(F\), and state the magnitude and direction of the force acting on the frame at the hinge.
Question 4
View details
4 One end of a light inextensible string of length 0.5 m is attached to a fixed point \(A\). The other end of the string is attached to a particle \(P\) of weight 6 N . Another light inextensible string of length 0.5 m connects \(P\) to a fixed point \(B\) which is 0.8 m vertically below \(A\). The particle \(P\) moves with constant speed in a horizontal circle with centre at the mid-point of \(A B\). Both strings are taut.
  1. Calculate the speed of \(P\) when the tension in the string \(B P\) is 2 N .
  2. Show that the angular speed of \(P\) must exceed \(5 \mathrm { rad } \mathrm { s } ^ { - 1 }\).
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{a03ad6c1-b4a3-4007-8d3b-ce289a998a55-3_499_721_715_712} A uniform solid cube with edges of length 0.4 m rests in equilibrium on a rough plane inclined at an angle of \(30 ^ { \circ }\) to the horizontal. \(A B C D\) is a cross-section through the centre of mass of the cube, with \(A B\) along a line of greatest slope. \(B\) lies below the level of \(A\). One end of a light elastic string with modulus of elasticity 12 N and natural length 0.4 m is attached to \(C\). The other end of the string is attached to a point below the level of \(B\) on the same line of greatest slope, such that the string makes an angle of \(30 ^ { \circ }\) with the plane (see diagram). The cube is on the point of toppling. Find
  1. the tension in the string,
  2. the weight of the cube.
Question 6
View details
6 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a03ad6c1-b4a3-4007-8d3b-ce289a998a55-4_520_582_264_440} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a03ad6c1-b4a3-4007-8d3b-ce289a998a55-4_497_300_287_1411} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} A small ball \(B\) is projected with speed \(U \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(\theta ^ { \circ }\) above the horizontal from a point \(O\). At time 2 s after the instant of projection, \(B\) strikes a smooth wall which slopes at \(60 ^ { \circ }\) to the horizontal. The speed of \(B\) is \(18 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and its direction of motion is perpendicular to the wall at the instant of impact (see Fig. 1). \(B\) bounces off the wall with speed \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in a direction perpendicular to the wall. At time 0.8 s after \(B\) bounces off the wall, \(B\) strikes the wall again at a lower point \(A\) (see Fig. 2).
  1. Find \(U\) and \(\theta\).
  2. By considering the motion of \(B\) after it bounces off the wall, calculate \(V\).
Question 7
View details
7 A force of magnitude \(0.4 t \mathrm {~N}\), applied at an angle of \(30 ^ { \circ }\) above the horizontal, acts on a particle \(P\), where \(t \mathrm {~s}\) is the time since the force starts to act. \(P\) is at rest on rough horizontal ground when \(t = 0\). The mass of \(P\) is 0.2 kg and the coefficient of friction between \(P\) and the ground is \(\mu\).
  1. Given that \(P\) is about to slip when \(t = 2\), find \(\mu\) and the value of \(t\) for the instant when \(P\) loses contact with the ground.
  2. While \(P\) is moving on the ground, it has velocity \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at time \(t \mathrm {~s}\). Show that $$\frac { \mathrm { d } v } { \mathrm {~d} t } = 2.165 t - 4.330$$ where the coefficients are correct to 4 significant figures.
  3. Calculate the speed of \(P\) when it loses contact with the ground. \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }