6
\includegraphics[max width=\textwidth, alt={}, center]{5cba3e17-3979-4c22-a415-2cdd60f09289-3_579_469_1142_840}
One end of a light inextensible string is attached to a fixed point \(A\) of a fixed vertical wire. The other end of the string is attached to a small ring \(B\), of mass 0.2 kg , through which the wire passes. A horizontal force of magnitude 5 N is applied to the mid-point \(M\) of the string. The system is in equilibrium with the string taut, with \(B\) below \(A\), and with angles \(A B M\) and \(B A M\) equal to \(30 ^ { \circ }\) (see diagram).
- Show that the tension in \(B M\) is 5 N .
- The ring is on the point of sliding up the wire. Find the coefficient of friction between the ring and the wire.
- A particle of mass \(m \mathrm {~kg}\) is attached to the ring. The ring is now on the point of sliding down the wire. Given that the coefficient of friction between the ring and the wire is unchanged, find the value of \(m\).