OCR Stats 1 (Statistics 1) 2018 September

Question 1
View details
1
  1. Differentiate the following with respect to \(x\).
    (a) \(\frac { 1 } { ( 3 x - 4 ) ^ { 2 } }\)
    (b) \(\frac { \ln ( x + 2 ) } { x }\)
  2. Find \(\int \mathrm { e } ^ { ( 2 x + 3 ) } \mathrm { d } x\).
Question 2
View details
2
  1. Ben saves his pocket money as follows.
    Each week he puts money into his piggy bank (which pays no interest). In the first week he puts in 10p. In the second week he puts in 12p. In the third week he puts in 14p, and so on. How much money does Ben have in his piggy bank after 25 weeks?
  2. On January 1st Shirley invests \(\pounds 500\) in a savings account that pays compound interest at \(3 \%\) per annum. She makes no further payments into this account. The interest is added on 31st December each year.
    (a) Find the number of years after which her investment will first be worth more than \(\pounds 600\).
    (b) State an assumption that you have made in answering part (ii)(a).
Question 3
View details
3 Use small angle approximations to estimate the solution of the equation \(\frac { \cos \frac { 1 } { 2 } \theta } { 1 + \sin \theta } = 0.825\), if \(\theta\) is small enough to neglect terms in \(\theta ^ { 3 }\) or above.
Question 4
View details
4 Prove that the sum of the squares of any two consecutive integers is of the form \(4 k + 1\), where \(k\) is an integer.
Question 5
View details
5 The diagram shows the graph of \(y = \sin x ^ { \circ }\) for \(0 \leqslant x \leqslant 360\).
\includegraphics[max width=\textwidth, alt={}, center]{85de9a39-f8be-40ee-b0c8-e2e632be93d8-4_597_965_1909_539} Find an equation for the transformed curve when the curve \(y = \sin x ^ { \circ }\) is reflected in
  1. the \(x\)-axis,
  2. the line \(y = 0.5\).
Question 6
View details
6
  1. Find the coefficient of \(x ^ { 4 }\) in the expansion of \(( 3 x - 2 ) ^ { 10 }\).
  2. In the expansion of \(( 1 + 2 x ) ^ { n }\), where \(n\) is a positive integer, the coefficients of \(x ^ { 7 }\) and \(x ^ { 8 }\) are equal. Find the value of \(n\).
  3. Find the coefficient of \(x ^ { 3 }\) in the expansion of \(\frac { 1 } { \sqrt { 4 + x } }\).
Question 7
View details
7 The diagram shows part of the curve \(y = x ^ { 2 }\) for \(0 \leqslant x \leqslant p\), where \(p\) is a constant.
\includegraphics[max width=\textwidth, alt={}, center]{85de9a39-f8be-40ee-b0c8-e2e632be93d8-5_736_543_669_762} The area \(A\) of the region enclosed by the curve, the \(x\)-axis and the line \(x = p\) is given approximately by the sum \(S\) of the areas of \(n\) rectangles, each of width \(h\), where \(h\) is small and \(n h = p\). The first three such rectangles are shown in the diagram.
  1. Find an expression for \(S\) in terms of \(n\) and \(h\).
  2. Use the identity \(\sum _ { r = 1 } ^ { n } r ^ { 2 } \equiv \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\) to show that \(S = \frac { 1 } { 6 } p ( p + h ) ( 2 p + h )\).
  3. Show how to use this result to find \(A\) in terms of \(p\).
Question 8
View details
8 The points \(A , B\) and \(C\) have position vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\), relative to an origin \(O\), in three dimensions. The figure \(O A P B S C T U\) is a cuboid, with vertices labelled as in the following diagram. \(M\) is the midpoint of \(A U\).
\includegraphics[max width=\textwidth, alt={}, center]{85de9a39-f8be-40ee-b0c8-e2e632be93d8-5_557_1221_2087_420}
Question 9
View details
9 The finance department of a retail firm recorded the daily income each day for 300 days. The results are summarised in the histogram.
\includegraphics[max width=\textwidth, alt={}, center]{85de9a39-f8be-40ee-b0c8-e2e632be93d8-6_689_1575_488_246}
  1. Find the number of days on which the daily income was between \(\pounds 4000\) and \(\pounds 6000\).
  2. Calculate an estimate of the number of days on which the daily income was between \(\pounds 2700\) and \(\pounds 3600\).
  3. Use the midpoints of the classes to show that an estimate of the mean daily income is \(\pounds 3275\). An estimate of the standard deviation of the daily income is \(\pounds 1060\). The finance department uses the distribution \(\mathrm { N } \left( 3275,1060 ^ { 2 } \right)\) to model the daily income, in pounds.
  4. Calculate the number of days on which, according to this model, the daily income would be between \(\pounds 4000\) and \(\pounds 6000\).
  5. It is given that approximately \(95 \%\) of values of the distribution \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\) lie within the range \(\mu \pm 2 \sigma\). Without further calculation, use this fact to comment briefly on whether the proposed model is a good fit to the data illustrated in the histogram.
Question 10
View details
10 The table shows information, derived from the 2011 UK census, about the percentage of employees who used various methods of travel to work in four Local Authorities.
Local AuthorityUnderground, metro, light rail or tramTrainBusDriveWalk or cycle
A0.3\%4.5\%17\%52.8\%11\%
B0.2\%1.7\%1.7\%63.4\%11\%
C35.2\%3.0\%12\%11.7\%16\%
D8.9\%1.4\%9\%54.7\%10\%
One of the Local Authorities is a London borough and two are metropolitan boroughs, not in London.
  1. Which one of the Local Authorities is a London borough? Give a reason for your answer.
  2. Which two of the Local Authorities are metropolitan boroughs outside London? In each case give a reason for your answer.
  3. Describe one difference between the public transport available in the two metropolitan boroughs, as suggested by the table.
  4. Comment on the availability of public transport in Local Authority B as suggested by the table.
Question 11
View details
11 In an experiment involving a bivariate distribution ( \(X , Y\) ) a random sample of 7 pairs of values was obtained and Pearson's product-moment correlation coefficient \(r\) was calculated for these values.
  1. The value of \(r\) was found to be 0.894 . Use the table below to test, at the \(5 \%\) significance level, whether there is positive linear correlation in the population, stating your hypotheses and conclusion clearly.
    1-tail test 2-tail test5\%2.5\%1\%0.5\%
    10\%5\%2\%1\%
    \(n\)
    1----
    2----
    30.98770.99690.99950.9999
    40.90000.95000.98000.9900
    50.80540.87830.93430.9587
    60.72930.81140.88220.9587
    70.66940.75450.83290.9745
    80.62150.70670.78870.8343
    90.58820.66640.74980.7977
    100.54940.63190.71550.7646
    Scatter diagrams for four sets of bivariate data, are shown. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{85de9a39-f8be-40ee-b0c8-e2e632be93d8-8_380_371_301_191} \captionsetup{labelformat=empty} \caption{Diagram A}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{85de9a39-f8be-40ee-b0c8-e2e632be93d8-8_373_373_301_628} \captionsetup{labelformat=empty} \caption{Diagram B}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{85de9a39-f8be-40ee-b0c8-e2e632be93d8-8_378_373_301_1064} \captionsetup{labelformat=empty} \caption{Diagram C}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{85de9a39-f8be-40ee-b0c8-e2e632be93d8-8_378_373_301_1503} \captionsetup{labelformat=empty} \caption{Diagram D}
    \end{figure} It is given that \(r = 0.894\) for one of these diagrams.
  2. For each of the other diagrams, state how you can tell that \(r \neq 0.894\).
Question 12
View details
12 In the past, the time spent by customers in a certain shop had mean 10.5 minutes and standard deviation 4.2 minutes. Following a change of layout in the shop, the mean time spent in the shop by a random sample of 50 customers is found to be 12.0 minutes.
  1. Assuming that the standard deviation is unchanged, test at the \(1 \%\) significance level whether the mean time spent by customers in the shop has changed.
  2. Another random sample of 50 customers is chosen and a similar test at the \(1 \%\) significance level is carried out. Given that the population mean time has not changed, state the probability that the conclusion of the test will be that the population mean time has changed.
Question 13
View details
13 Bag A contains 3 black discs and 2 white discs only. Initially Bag B is empty. Discs are removed at random from bag A, and are placed in bag B, one at a time, until all 5 discs are in bag B.
  1. Write down the probability that the last disc that is placed in bag B is black.
  2. Find the probability that the first disc and the last disc that are placed in bag B are both black.
  3. Find the probability that, starting from when the first disc is placed in bag B , the number of black discs in bag B is always greater than the number of white discs in bag B.
Question 14
View details
14 A counter is initially at point \(O\) on the \(x\)-axis. A fair coin is thrown 6 times. Each time the coin shows heads, the counter is moved one unit in the positive \(x\)-direction. Each time the coin shows tails, the counter is moved one unit in the negative \(x\)-direction. The final distance of the counter from \(O\), in either direction, is denoted by \(D\). Determine the most probable value of \(D\). \section*{END OF QUESTION PAPER} \section*{OCR
Oxford Cambridge and RSA}