Overbooking probability problems

Calculate probability of overbooking when more tickets are sold than seats available, considering no-show rates.

4 questions

CAIE S2 2017 November Q2
2 An airline has found that, on average, 1 in 100 passengers do not arrive for each flight, and that this occurs randomly. For one particular flight the airline always sells 403 seats. The plane only has room for 400 passengers, so the flight is overbooked if the number of passengers who do not arrive is less than 3 . Use a suitable approximation to find the probability that the flight is overbooked.
CAIE S2 2009 November Q3
3 An airline knows that some people who have bought tickets may not arrive for the flight. The airline therefore sells more tickets than the number of seats that are available. For one flight there are 210 seats available and 213 people have bought tickets. The probability of any person who has bought a ticket not arriving for the flight is \(\frac { 1 } { 50 }\).
  1. By considering the number of people who do not arrive for the flight, use a suitable approximation to calculate the probability that more people will arrive than there are seats available. Independently, on another flight for which 135 people have bought tickets, the probability of any person not arriving is \(\frac { 1 } { 75 }\).
  2. Calculate the probability that, for both these flights, the total number of people who do not arrive is 5 .
OCR S2 2006 June Q5
5 An airline has 300 seats available on a flight to Australia. It is known from experience that on average only \(99 \%\) of those who have booked seats actually arrive to take the flight, the remaining \(1 \%\) being called 'no-shows'. The airline therefore sells more than 300 seats. If more than 300 passengers then arrive, the flight is over-booked. Assume that the number of no-show passengers can be modelled by a binomial distribution.
  1. If the airline sells 303 seats, state a suitable distribution for the number of no-show passengers, and state a suitable approximation to this distribution, giving the values of any parameters. Using the distribution and approximation in part (i),
  2. show that the probability that the flight is over-booked is 0.4165 , correct to 4 decimal places,
  3. find the largest number of seats that can be sold for the probability that the flight is over-booked to be less than 0.2.
Edexcel S2 2002 January Q3
3. An airline knows that overall \(3 \%\) of passengers do not turn up for flights. The airline decides to adopt a policy of selling more tickets than there are seats on a flight. For an aircraft with 196 seats, the airline sold 200 tickets for a particular flight.
  1. Write down a suitable model for the number of passengers who do not turn up for this flight after buying a ticket. By using a suitable approximation, find the probability that
  2. more than 196 passengers turn up for this flight,
  3. there is at least one empty seat on this flight.