Rounded or discrete from continuous

Find probabilities for rounded values or integer marks when the underlying variable is continuous normal (requires considering intervals).

3 questions

CAIE S1 2012 November Q5
5 The random variable \(X\) is such that \(X \sim \mathrm {~N} ( 82,126 )\).
  1. A value of \(X\) is chosen at random and rounded to the nearest whole number. Find the probability that this whole number is 84 .
  2. Five independent observations of \(X\) are taken. Find the probability that at most one of them is greater than 87.
  3. Find the value of \(k\) such that \(\mathrm { P } ( 87 < X < k ) = 0.3\).
OCR MEI S2 2010 January Q3
3 In an English language test for 12-year-old children, the raw scores, \(X\), are Normally distributed with mean 45.3 and standard deviation 11.5.
  1. Find
    (A) \(\mathrm { P } ( X < 50 )\),
    (B) \(\mathrm { P } ( 45.3 < X < 50 )\).
  2. Find the least raw score which would be obtained by the highest scoring \(10 \%\) of children.
  3. The raw score is then scaled so that the scaled score is Normally distributed with mean 100 and standard deviation 15. This scaled score is then rounded to the nearest integer. Find the probability that a randomly selected child gets a rounded score of exactly 111 .
  4. In a Mathematics test for 12-year-old children, the raw scores, \(Y\), are Normally distributed with mean \(\mu\) and standard deviation \(\sigma\). Given that \(\mathrm { P } ( Y < 15 ) = 0.3\) and \(\mathrm { P } ( Y < 22 ) = 0.8\), find the values of \(\mu\) and \(\sigma\).
OCR MEI S2 2013 June Q3
3 The scores, \(X\), in Paper 1 of an English examination have an underlying Normal distribution with mean 76 and standard deviation 12. The scores are reported as integer marks. So, for example, a score for which \(75.5 \leqslant X < 76.5\) is reported as 76 marks.
  1. Find the probability that a candidate's reported mark is 76 .
  2. Find the probability that a candidate's reported mark is at least 80 .
  3. Three candidates are chosen at random. Find the probability that exactly one of these three candidates' reported marks is at least 80 . The proportion of candidates who receive an A* grade (the highest grade) must not exceed \(10 \%\) but should be as close as possible to \(10 \%\).
  4. Find the lowest reported mark that should be awarded an A* grade. The scores in Paper 2 of the examination have an underlying Normal distribution with mean \(\mu\) and standard deviation 12.
  5. Given that \(20 \%\) of candidates receive a reported mark of 50 or less, find the value of \(\mu\).