Find parameter from expectation

Questions that require finding a constant or parameter in the PDF using information about E(X) or E(X²), typically by setting up and solving an integral equation.

10 questions

CAIE S2 2023 November Q5
5 The random variable \(X\) has probability density function, f, given by $$f ( x ) = \begin{cases} \frac { 1 } { x ^ { 2 } } & a < x < b
0 & \text { otherwise } \end{cases}$$ where \(a\) and \(b\) are positive constants.
  1. It is given that \(\mathrm { E } ( X ) = \ln 2\). Show that \(b = 2 a\).
  2. Show that \(a = \frac { 1 } { 2 }\).
  3. Find the median of \(X\).
CAIE S2 2024 November Q6
6 The time, \(X\) hours, taken by a large number of people to complete a challenge is modelled by the probability density function given by $$f ( x ) = \left\{ \begin{array} { c l } \frac { 1 } { x ^ { 2 } } & a \leqslant x \leqslant b
0 & \text { otherwise } \end{array} \right.$$ where \(a\) and \(b\) are constants.
  1. State what the constants \(a\) and \(b\) represent in this context.
  2. Show that \(a = \frac { b } { b + 1 }\).
    It is given that \(\mathrm { E } ( X ) = \ln 3\).
  3. Show that \(b = 2\) and find the value of \(a\).
    \includegraphics[max width=\textwidth, alt={}, center]{9ac74d4c-f5e0-4c5d-ab25-5692dfb06f0b-09_2726_35_97_20}
  4. Find the median of \(X\).
CAIE S2 2017 November Q4
4 The random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { k } { \sqrt { } x } & 0 < x \leqslant a
0 & \text { otherwise } \end{cases}$$ where \(k\) and \(a\) are constants. It is given that \(\mathrm { E } ( X ) = 3\).
  1. Find the value of \(a\) and show that \(k = \frac { 1 } { 6 }\).
  2. Find the median of \(X\).
CAIE S2 2012 November Q6
6 Darts are thrown at random at a circular board. The darts hit the board at distances \(X\) centimetres from the centre, where \(X\) is a random variable with probability density function given by $$f ( x ) = \begin{cases} \frac { 2 } { a ^ { 2 } } x & 0 \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}$$ where \(a\) is a positive constant.
  1. Verify that f is a probability density function whatever the value of \(a\). It is now given that \(\mathrm { E } ( X ) = 8\).
  2. Find the value of \(a\).
  3. Find the probability that a dart lands more than 6 cm from the centre of the board.
OCR S2 2012 June Q7
7 The continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} k x ^ { 2 } & 0 \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}$$ where \(a\) and \(k\) are constants.
  1. Sketch the graph of \(y = \mathrm { f } ( x )\) and explain in non-technical language what this tells you about \(X\).
  2. Given that \(\mathrm { E } ( X ) = 4.5\), find
    (a) the value of \(a\),
    (b) \(\operatorname { Var } ( X )\).
Edexcel S2 2021 January Q4
4. A continuous random variable \(X\) has probability density function $$\mathrm { f } ( x ) = \left\{ \begin{array} { c c } k ( a - x ) ^ { 2 } & 0 \leqslant x \leqslant a
0 & \text { otherwise } \end{array} \right.$$ where \(k\) and \(a\) are constants.
  1. Show that \(k a ^ { 3 } = 3\) Given that \(\mathrm { E } ( X ) = 1.5\)
  2. use algebraic integration to show that \(a = 6\)
  3. Verify that the median of \(X\) is 1.2 to one decimal place.
    \includegraphics[max width=\textwidth, alt={}, center]{f63c39df-cfc9-4a6b-838d-67613710b0ce-15_2255_50_314_34}
    VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
Edexcel S2 2015 June Q6
  1. A continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) where
$$f ( x ) = \left\{ \begin{array} { c c } k x ^ { n } & 0 \leqslant x \leqslant 1
0 & \text { otherwise } \end{array} \right.$$ where \(k\) and \(n\) are positive integers.
  1. Find \(k\) in terms of \(n\).
  2. Find \(\mathrm { E } ( X )\) in terms of \(n\).
  3. Find \(\mathrm { E } \left( X ^ { 2 } \right)\) in terms of \(n\). Given that \(n = 2\)
  4. find \(\operatorname { Var } ( 3 X )\).
SPS SPS FM Statistics 2025 April Q7
7. The random variable \(y\) has probability density function \(\mathrm { f } ( y )\) given by $$\mathrm { f } ( y ) = \left\{ \begin{array} { c c } k y ( a - y ) & 0 \leq y \leq 3
0 & \text { otherwise } \end{array} \right.$$ where \(k\) and \(a\) are positive constants.
    1. Explain why \(a \geq 3\)
    2. Show that \(k = \frac { 2 } { 9 ( a - 2 ) }\) Given that \(\mathrm { E } ( Y ) = 1.75\)
  1. Find the values of a and k .
  2. Write down the mode of Y
SPS SPS FM Statistics 2026 January Q9
9 A continuous random variable \(X\) has probability density function given by the following function, - where \(a\) is a constant.
\(\mathrm { f } ( x ) = \left\{ \begin{array} { l l } \frac { 2 x } { a ^ { 2 } } & 0 \leqslant x \leqslant a ,
0 & \text { otherwise. } \end{array} \right\}\)
The expected value of \(X\) is 4 .
  1. Show that \(a = 6\). Five independent observations of \(X\) are obtained, and the largest of them is denoted by \(M\).
  2. Find the cumulative distribution function of \(M\).
    [0pt] [BLANK PAGE]
OCR Further Statistics 2018 December Q8
8 A continuous random variable \(X\) has probability density function given by the following function, where \(a\) is a constant.
\(\mathrm { f } ( x ) = \left\{ \begin{array} { l l } \frac { 2 x } { a ^ { 2 } } & 0 \leqslant x \leqslant a ,
0 & \text { otherwise. } \end{array} \right\}\)
The expected value of \(X\) is 4 .
  1. Show that \(a = 6\). Five independent observations of \(X\) are obtained, and the largest of them is denoted by \(M\).
  2. Find the cumulative distribution function of \(M\). \section*{OCR} Oxford Cambridge and RSA