Questions that provide a complete probability distribution table and ask to calculate Var(X), possibly also asking for E(X) first.
15 questions
| \(r\) | 10 | 20 | 30 | 40 |
| \(\mathrm { P } ( X = r )\) | 0.2 | 0.3 | 0.3 | 0.2 |
| \(x\) | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( X = x )\) | \(\frac { 1 } { 2 }\) | \(\frac { 1 } { 4 }\) | \(\frac { 1 } { 8 }\) | \(\frac { 1 } { 8 }\) |
| \(x\) | 0 | 2 |
| \(\mathrm { P } ( X = x )\) | \(a\) | \(1 - a\) |
| \(w\) | 0 | 2 | 4 |
| \(\mathrm { P } ( W = w )\) | 0.3 | 0.4 | 0.3 |
| \(r\) | 10 | 20 | 30 | 40 |
| \(\mathrm { P } ( X = r )\) | 0.2 | 0.3 | 0.3 | 0.2 |
| \(x\) | 1 | 3 | 5 | 7 |
| \(\mathrm { P } ( X = x )\) | 0.4 | 0.3 | 0.2 | 0.1 |
| \(a\) | 1 | 2 | 5 | 10 | 20 |
| \(\mathrm { P } ( A = a )\) | 0.3 | 0.1 | 0.1 | 0.2 | 0.3 |
| \(a\) | 1 | 4 | 5 | 7 |
| \(\mathrm { P } ( A = a )\) | 0.40 | 0.20 | 0.25 | 0.15 |
| \(b\) | 1 | 3 | 4 | \(k\) |
| \(\mathrm { P } ( B = b )\) | 0.25 | 0.25 | 0.25 | 0.25 |
| \(r\) | 2 | 3 | 4 | 5 | 6 |
| \(\mathrm { P } ( R = r )\) | 0.25 | 0.3 | 0.15 | 0.1 | 0.2 |
| \(y\) | 2 | 3 | 4 | 5 | 6 |
| \(\mathrm { P } ( Y = y )\) | 0.1 | 0.2 | 0.1 | \(a\) | \(b\) |
| \(\mathrm {~F} ( y )\) | 0.1 | 0.3 | 0.4 | \(c\) | \(d\) |
| \(x\) | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( X = x )\) | \(\frac { 1 } { 10 }\) | \(\frac { 1 } { 5 }\) | \(\frac { 3 } { 10 }\) | \(\frac { 2 } { 5 }\) |
| \(x\) | - 1 | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( X = x )\) | \(\frac { 1 } { 5 }\) | \(a\) | \(\frac { 1 } { 10 }\) | \(a\) | \(\frac { 1 } { 5 }\) |
| \(\boldsymbol { x }\) | 40 | 45 | 55 | 74 |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0.30 | 0.24 | 0.36 | 0.10 |
| \(\boldsymbol { x }\) | 0 | 1 | 2 | 3 | 4 |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0.1 | 0.35 | 0.25 | 0.2 | 0.1 |
| \(\boldsymbol { r }\) | 1 | 2 | 4 |
| \(\mathbf { P } ( \boldsymbol { R } = \boldsymbol { r } )\) | \(\frac { 1 } { 4 }\) | \(\frac { 1 } { 2 }\) | \(\frac { 1 } { 4 }\) |