Test independence using definition

A question is this type if and only if it asks to determine whether two events are independent by checking if P(A ∩ B) = P(A) × P(B), typically involving dice, cards, or other probability scenarios.

8 questions

CAIE S1 2020 November Q1
1 Two ordinary fair dice, one red and the other blue, are thrown.
Event \(A\) is 'the score on the red die is divisible by 3 '.
Event \(B\) is 'the sum of the two scores is at least 9 '.
  1. Find \(\mathrm { P } ( A \cap B )\).
  2. Hence determine whether or not the events \(A\) and \(B\) are independent.
CAIE S1 2011 June Q4
4 Tim throws a fair die twice and notes the number on each throw.
  1. Tim calculates his final score as follows. If the number on the second throw is a 5 he multiplies the two numbers together, and if the number on the second throw is not a 5 he adds the two numbers together. Find the probability that his final score is
    (a) 12,
    (b) 5 .
  2. Events \(A , B , C\) are defined as follows.
    \(A\) : the number on the second throw is 5
    \(B\) : the sum of the numbers is 6
    \(C\) : the product of the numbers is even
    By calculation find which pairs, if any, of the events \(A , B\) and \(C\) are independent.
CAIE S1 2017 June Q2
2 Ashfaq throws two fair dice and notes the numbers obtained. \(R\) is the event 'The product of the two numbers is 12 '. \(T\) is the event 'One of the numbers is odd and one of the numbers is even'. By finding appropriate probabilities, determine whether events \(R\) and \(T\) are independent.
CAIE S1 2019 June Q3
3 A fair six-sided die is thrown twice and the scores are noted. Event \(X\) is defined as 'The total of the two scores is 4'. Event \(Y\) is defined as 'The first score is 2 or 5'. Are events \(X\) and \(Y\) independent? Justify your answer.
CAIE S1 2019 June Q1
1 Two ordinary fair dice are thrown and the numbers obtained are noted. Event \(S\) is 'The sum of the numbers is even'. Event \(T\) is 'The sum of the numbers is either less than 6 or a multiple of 4 or both'. Showing your working, determine whether the events \(S\) and \(T\) are independent.
OCR MEI S1 Q6
6 The table shows all the possible products of the scores on two fair four-sided dice.
\multirow{2}{*}{}Score on second die
1234
\multirow{4}{*}{Score on first die}11234
22468
336912
4481216
  1. Find the probability that the product of the two scores is less than 10 .
  2. Show that the events 'the score on the first die is even' and 'the product of the scores on the two dice is less than \(10 ^ { \prime }\) are not independent.
OCR MEI S1 Q2
2 Each day Anna drives to work.
  • \(R\) is the event that it is raining.
  • \(L\) is the event that Anna arrives at work late.
You are given that \(\mathrm { P } ( R ) = 0.36 , \mathrm { P } ( L ) = 0.25\) and \(\mathrm { P } ( R \cap L ) = 0.2\).
  1. Determine whether the events \(R\) and \(L\) are independent.
  2. Draw a Venn diagram showing the events \(R\) and \(L\). Fill in the probability corresponding to each of the four regions of your diagram.
  3. Find \(\mathrm { P } ( L \mid R )\). State what this probability represents.
OCR MEI S1 2011 January Q2
2 The table shows all the possible products of the scores on two fair four-sided dice.
\multirow{2}{*}{}Score on second die
1234
\multirow{4}{*}{Score on first die}11234
22468
336912
4481216
  1. Find the probability that the product of the two scores is less than 10 .
  2. Show that the events 'the score on the first die is even' and 'the product of the scores on the two dice is less than 10' are not independent.