Detachment or peg impact mid-motion

A question is this type if and only if it involves a rotating system where a component detaches or the body strikes a peg during motion, requiring the student to analyse the subsequent motion of the altered system using energy or momentum methods.

4 questions · Challenging +1.8

Sort by: Default | Easiest first | Hardest first
CAIE FP2 2010 June Q11 EITHER
Challenging +1.8
\includegraphics[max width=\textwidth, alt={}]{f8dd2aee-4ed5-4588-aa03-5dd56d9e7529-5_538_572_456_788}
A uniform disc, of mass \(4 m\) and radius \(a\), and a uniform ring, of mass \(m\) and radius \(2 a\), each have centre \(O\). A wheel is made by fixing three uniform rods, \(O A , O B\) and \(O C\), each of mass \(m\) and length \(2 a\), to the disc and the ring, as shown in the diagram. Show that the moment of inertia of the wheel about an axis through \(A\), perpendicular to the plane of the wheel, is \(42 m a ^ { 2 }\). The axis through \(A\) is horizontal, and the wheel can rotate freely about this axis. The wheel is released from rest with \(O\) above the level of \(A\) and \(A O\) making an angle of \(30 ^ { \circ }\) with the horizontal. Find the angular speed of the wheel when \(A O\) is horizontal. When \(A O\) is horizontal the disc becomes detached from the wheel. Find the angle that \(A O\) makes with the horizontal when the wheel first comes to instantaneous rest.
CAIE FP2 2010 June Q11 EITHER
Challenging +1.8
\includegraphics[max width=\textwidth, alt={}]{d24c9c0b-b8f6-4407-8b93-81d90285b60d-5_538_572_456_788}
A uniform disc, of mass \(4 m\) and radius \(a\), and a uniform ring, of mass \(m\) and radius \(2 a\), each have centre \(O\). A wheel is made by fixing three uniform rods, \(O A , O B\) and \(O C\), each of mass \(m\) and length \(2 a\), to the disc and the ring, as shown in the diagram. Show that the moment of inertia of the wheel about an axis through \(A\), perpendicular to the plane of the wheel, is \(42 m a ^ { 2 }\). The axis through \(A\) is horizontal, and the wheel can rotate freely about this axis. The wheel is released from rest with \(O\) above the level of \(A\) and \(A O\) making an angle of \(30 ^ { \circ }\) with the horizontal. Find the angular speed of the wheel when \(A O\) is horizontal. When \(A O\) is horizontal the disc becomes detached from the wheel. Find the angle that \(A O\) makes with the horizontal when the wheel first comes to instantaneous rest.
Edexcel M5 2004 June Q7
16 marks Challenging +1.8
7. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{26fef791-e6fb-45a8-89e9-16c4b4a1a4e4-5_313_1443_317_356}
\end{figure} A body consists of two uniform circular discs, each of mass \(m\) and radius \(a\), with a uniform rod. The centres of the discs are fixed to the ends \(A\) and \(B\) of the rod, which has mass \(3 m\) and length 8a. The discs and the rod are coplanar, as shown in Fig. 2. The body is free to rotate in a vertical plane about a smooth fixed horizontal axis. The axis is perpendicular to the plane of the discs and passes through the point \(O\) of the rod, where \(A O = 3 a\).
  1. Show that the moment of inertia of the body about the axis is \(54 m a ^ { 2 }\). The body is held at rest with \(A B\) horizontal and is then released. When the body has turned through an angle of \(30 ^ { \circ }\), the rod \(A B\) strikes a small fixed smooth peg \(P\) where \(O P = 3 a\). Given that the body rebounds from the peg with its angular speed halved by the impact,
  2. show that the magnitude of the impulse exerted on the body by the peg at the impact is $$9 m \sqrt { \left( \frac { 5 g a } { 6 } \right) } .$$ END
Edexcel M5 2018 June Q7
16 marks Challenging +1.8
7. A pendulum consists of a uniform circular disc, of radius \(a\) and mass \(4 m\), whose centre is fixed to the end \(B\) of a uniform \(\operatorname { rod } A B\). The rod has mass \(3 m\) and length \(4 l\), where \(2 l > a\). The rod lies in the same plane as the disc. The pendulum is free to rotate about a fixed smooth horizontal axis \(L\) which passes through \(A\) and is perpendicular to the plane of the disc. The moment of inertia of the pendulum about \(L\) is \(2 m \left( a ^ { 2 } + 40 l ^ { 2 } \right)\).
  1. Find the approximate period of small oscillations of the pendulum about its position of stable equilibrium. The pendulum is held with \(B\) vertically above \(A\) and is then slightly displaced from rest. In the subsequent motion the midpoint of \(A B\) strikes a small peg, which is fixed at the same horizontal level as \(A\), and the pendulum rebounds upwards. Immediately before it strikes the peg, the angular speed of the pendulum is \(\omega\).
  2. Show that \(\omega ^ { 2 } = \frac { 22 g l } { \left( a ^ { 2 } + 40 l ^ { 2 } \right) }\) Immediately after it strikes the peg, the angular speed of the pendulum is \(\frac { 1 } { 2 } \omega\).
  3. Find, in terms of \(m , g , a\) and \(l\), the magnitude of the impulse exerted on the peg by the pendulum.
  4. Show that the size of the angle turned through by the pendulum, between it hitting the peg and it next coming to rest, is \(\arcsin \frac { 1 } { 4 }\).
    \includegraphics[max width=\textwidth, alt={}]{1242d28a-a4bd-4754-ac49-9b48de95b880-24_2632_1830_121_121}