Edexcel
M5
2014
June
Q4
8 marks
Challenging +1.8
4. A uniform solid sphere has mass \(M\) and radius \(a\). Prove, using integration, that the moment of inertia of the sphere about a diameter is \(\frac { 2 M a ^ { 2 } } { 5 }\)
[0pt]
[You may assume without proof that the moment of inertia of a uniform circular disc, of mass \(m\) and radius \(r\), about an axis through its centre and perpendicular to its plane is \(\frac { 1 } { 2 } m r ^ { 2 }\).]
Edexcel
M5
2015
June
Q7
12 marks
Hard +2.3
7. (a) Find, using integration, the moment of inertia of a uniform solid hemisphere, of mass \(m\) and radius \(a\), about a diameter of its plane face.
[0pt]
[You may assume, without proof, that the moment of inertia of a uniform circular disc, of mass \(m\) and radius \(r\), about a diameter is \(\frac { 1 } { 4 } m r ^ { 2 }\).]
(b) Hence find the moment of inertia of a uniform solid sphere, of mass \(M\) and radius \(a\), about a diameter.
Edexcel
M5
2016
June
Q4
10 marks
Challenging +1.8
4. Find, using integration, the moment of inertia of a uniform cylindrical shell of radius \(r\), height \(h\) and mass \(M\), about a diameter of one end.
(10)
Edexcel
M5
Q7
16 marks
Challenging +1.8
7. Prove, using integration, that the moment of inertia of a uniform solid right circular cone, of mass \(M\) and base radius \(a\), about its axis is \(\frac { 3 } { 10 } M a ^ { 2 }\).
[0pt]
[You may assume, without proof, that the moment of inertia of a uniform circular disc, of mass \(m\) and radius \(r\), about an axis through its centre and perpendicular to its plane is \(\frac { 1 } { 2 } m r ^ { 2 }\).]