Quadratic in exponential form

Solve equations that reduce to quadratics by substituting u = a^x or u = e^x, such as (a^x)² + pa^x + q = 0.

25 questions · Moderate -0.3

Sort by: Default | Easiest first | Hardest first
CAIE P2 2020 Specimen Q4
8 marks Moderate -0.3
4
  1. Sb the eq tiந \({ } ^ { 2 x } + 5 ^ { x } = \frac { 13 } { 8 } \quad\) in wer co rect t \(\beta \quad\) sig fican fig es. [44
  2. It is g vert \(\mathbf { h } \mathrm { t } \ln y + \overline { 5 } + \mathrm { n } y = 2 \ln x\). Eq ess \(y\) irt erms \(\mathbf { b } x\), irr fo m no id \(\mathbf { v }\) ng \(\mathbf { g }\) riths.
CAIE P2 2010 June Q5
6 marks Moderate -0.8
5
  1. Given that \(y = 2 ^ { x }\), show that the equation $$2 ^ { x } + 3 \left( 2 ^ { - x } \right) = 4$$ can be written in the form $$y ^ { 2 } - 4 y + 3 = 0$$
  2. Hence solve the equation $$2 ^ { x } + 3 \left( 2 ^ { - x } \right) = 4$$ giving the values of \(x\) correct to 3 significant figures where appropriate.
CAIE P2 2012 June Q2
5 marks Moderate -0.8
2
  1. Given that \(5 ^ { 2 x } + 5 ^ { x } = 12\), find the value of \(5 ^ { x }\).
  2. Hence, using logarithms, solve the equation \(5 ^ { 2 x } + 5 ^ { x } = 12\), giving the value of \(x\) correct to 3 significant figures.
CAIE P2 2016 June Q3
6 marks Moderate -0.3
3 Given that \(3 \mathrm { e } ^ { x } + 8 \mathrm { e } ^ { - x } = 14\), find the possible values of \(\mathrm { e } ^ { x }\) and hence solve the equation \(3 \mathrm { e } ^ { x } + 8 \mathrm { e } ^ { - x } = 14\) correct to 3 significant figures.
CAIE P2 2018 June Q1
5 marks Moderate -0.3
1 Solve the equation \(3 \mathrm { e } ^ { 2 x } - 82 \mathrm { e } ^ { x } + 27 = 0\), giving your answers in the form \(k \ln 3\).
CAIE P3 2015 June Q2
4 marks Moderate -0.8
2 Using the substitution \(u = 4 ^ { x }\), solve the equation \(4 ^ { x } + 4 ^ { 2 } = 4 ^ { x + 2 }\), giving your answer correct to 3 significant figures.
CAIE P3 2017 June Q3
4 marks Moderate -0.8
3 Using the substitution \(u = \mathrm { e } ^ { x }\), solve the equation \(4 \mathrm { e } ^ { - x } = 3 \mathrm { e } ^ { x } + 4\). Give your answer correct to 3 significant figures.
CAIE P3 2019 June Q2
4 marks Moderate -0.3
2 Showing all necessary working, solve the equation \(9 ^ { x } = 3 ^ { x } + 12\). Give your answer correct to 2 decimal places.
CAIE P2 2002 November Q3
6 marks Moderate -0.8
3
  1. Express \(9 ^ { x }\) in terms of \(y\), where \(y = 3 ^ { x }\).
  2. Hence solve the equation $$2 \left( 9 ^ { x } \right) - 7 \left( 3 ^ { x } \right) + 3 = 0 ,$$ expressing your answers for \(x\) in terms of logarithms where appropriate.
CAIE P2 2011 November Q4
5 marks Moderate -0.3
4 Solve the equation \(3 ^ { 2 x } - 7 \left( 3 ^ { x } \right) + 10 = 0\), giving your answers correct to 3 significant figures.
CAIE P2 2016 November Q1
5 marks Moderate -0.3
1
  1. It is given that \(x\) satisfies the equation \(3 ^ { 2 x } = 5 \left( 3 ^ { x } \right) + 14\). Find the value of \(3 ^ { x }\) and, using logarithms, find the value of \(x\) correct to 3 significant figures.
  2. Hence state the values of \(x\) satisfying the equation \(3 ^ { 2 | x | } = 5 \left( 3 ^ { | x | } \right) + 14\).
CAIE P2 2018 November Q2
5 marks Moderate -0.3
2 Given that \(9 ^ { x } + 3 ^ { x } = 240\), find the value of \(3 ^ { x }\) and hence, using logarithms, find the value of \(x\) correct to 4 significant figures.
CAIE P3 2020 June Q3
6 marks Standard +0.3
3
  1. Show that the equation $$\ln \left( 1 + \mathrm { e } ^ { - x } \right) + 2 x = 0$$ can be expressed as a quadratic equation in \(\mathrm { e } ^ { x }\).
  2. Hence solve the equation \(\ln \left( 1 + \mathrm { e } ^ { - x } \right) + 2 x = 0\), giving your answer correct to 3 decimal places.
CAIE P3 2021 June Q2
5 marks Standard +0.3
2 Solve the equation \(4 ^ { x } = 3 + 4 ^ { - x }\). Give your answer correct to 3 decimal places.
CAIE P3 2023 June Q1
3 marks Standard +0.3
1 Solve the equation $$3 \mathrm { e } ^ { 2 x } - 4 \mathrm { e } ^ { - 2 x } = 5$$ Give the answer correct to 3 decimal places.
Edexcel C2 2008 June Q4
6 marks Moderate -0.3
4. (a) Find, to 3 significant figures, the value of \(x\) for which \(5 ^ { x } = 7\).
(b) Solve the equation \(5 ^ { 2 x } - 12 \left( 5 ^ { x } \right) + 35 = 0\).
OCR C2 Q5
9 marks Moderate -0.3
5. (i) Evaluate $$\log _ { 3 } 27 - \log _ { 8 } 4$$ (ii) Solve the equation $$4 ^ { x } - 3 \left( 2 ^ { x + 1 } \right) = 0$$
Edexcel AS Paper 1 Specimen Q12
4 marks Standard +0.3
12. A student was asked to give the exact solution to the equation $$2 ^ { 2 x + 4 } - 9 \left( 2 ^ { x } \right) = 0$$ The student's attempt is shown below: $$\begin{aligned} & 2 ^ { 2 x + 4 } - 9 \left( 2 ^ { x } \right) = 0 \\ & 2 ^ { 2 x } + 2 ^ { 4 } - 9 \left( 2 ^ { x } \right) = 0 \\ & \text { Let } \quad 2 ^ { x } = y \\ & y ^ { 2 } - 9 y + 8 = 0 \\ & ( y - 8 ) ( y - 1 ) = 0 \\ & y = 8 \text { or } y = 1 \\ & \text { So } x = 3 \text { or } x = 0 \end{aligned}$$
  1. Identify the two errors made by the student.
  2. Find the exact solution to the equation.
Edexcel PMT Mocks Q8
4 marks Standard +0.3
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cb92f7b6-2ba5-4703-9595-9ba8570fc52b-14_976_1296_283_429} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The curves with equation \(y = 21 - 2 ^ { x }\) meet the curve with equation \(y = 2 ^ { 2 x + 1 }\) at the point \(A\) as shown in Figure 2. Find the exact coordinates of point \(A\).
Edexcel Paper 2 2020 October Q5
4 marks Standard +0.3
  1. The curve with equation \(y = 3 \times 2 ^ { x }\) meets the curve with equation \(y = 15 - 2 ^ { x + 1 }\) at the point \(P\). Find, using algebra, the exact \(x\) coordinate of \(P\).
Edexcel C2 Q5
9 marks Moderate -0.3
5. (a) Evaluate $$\log _ { 3 } 27 - \log _ { 8 } 4$$ (b) Solve the equation $$4 ^ { x } - 3 \left( 2 ^ { x + 1 } \right) = 0 .$$
Edexcel C2 Q6
9 marks Moderate -0.3
  1. (a) Given that \(y = 3 ^ { x }\), find expressions in terms of \(y\) for
    1. \(3 ^ { x + 1 }\),
    2. \(3 ^ { 2 x - 1 }\).
      (b) Hence, or otherwise, solve the equation
    $$3 ^ { x + 1 } - 3 ^ { 2 x - 1 } = 6$$ giving non-exact answers to 2 decimal places.
AQA C3 2005 June Q5
7 marks Moderate -0.3
5
  1. Solve the equation \(2 \mathrm { e } ^ { x } = 5\), giving your answer as an exact natural logarithm.
    1. By substituting \(y = \mathrm { e } ^ { x }\), show that the equation \(2 \mathrm { e } ^ { x } + 5 \mathrm { e } ^ { - x } = 7\) can be written as $$2 y ^ { 2 } - 7 y + 5 = 0$$
    2. Hence solve the equation \(2 \mathrm { e } ^ { x } + 5 \mathrm { e } ^ { - x } = 7\), giving your answers as exact values of \(x\).
AQA C3 2009 January Q7
6 marks Moderate -0.3
7
  1. Given that \(3 \mathrm { e } ^ { x } = 4\), find the exact value of \(x\).
    1. By substituting \(y = \mathrm { e } ^ { x }\), show that the equation \(3 \mathrm { e } ^ { x } + 20 \mathrm { e } ^ { - x } = 19\) can be written as \(3 y ^ { 2 } - 19 y + 20 = 0\).
    2. Hence solve the equation \(3 \mathrm { e } ^ { x } + 20 \mathrm { e } ^ { - x } = 19\), giving your answers as exact values. (3 marks)
AQA AS Paper 2 2020 June Q8
6 marks Moderate -0.3
8
  1. Using \(y = 2 ^ { 2 x }\) as a substitution, show that $$16 ^ { x } - 2 ^ { ( 2 x + 3 ) } - 9 = 0$$ can be written as $$y ^ { 2 } - 8 y - 9 = 0$$ 8
  2. Hence, show that the equation $$16 ^ { x } - 2 ^ { ( 2 x + 3 ) } - 9 = 0$$ has \(x = \log _ { 2 } 3\) as its only solution.
    Fully justify your answer.