Equation of plane containing line and point/parallel to vector

A question is this type if and only if it asks to find a plane equation given a line it contains and either a point on the plane or a direction it's parallel to.

4 questions · Challenging +1.2

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2020 June Q7
15 marks Challenging +1.2
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = - 5 \mathbf { j } + \lambda ( 5 \mathbf { i } + 2 \mathbf { k } )\) and \(\mathbf { r } = 4 \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k } + \mu ( \mathbf { j } + \mathbf { k } )\) respectively. The plane \(\Pi\) contains \(l _ { 1 }\) and is parallel to \(l _ { 2 }\).
  1. Find the equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the distance between \(l _ { 2 }\) and \(\Pi\).
    The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Show that \(P\) has position vector \(\frac { 55 } { 27 } \mathbf { i } - 5 \mathbf { j } + \frac { 22 } { 27 } \mathbf { k }\) and state a vector equation for \(P Q\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 1 2021 June Q6
15 marks Challenging +1.2
6 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = - \mathbf { i } - 2 \mathbf { j } + \mathbf { k } + s ( 2 \mathbf { i } - 3 \mathbf { j } )\) and \(\mathbf { r } = 3 \mathbf { i } - 2 \mathbf { k } + t ( 3 \mathbf { i } - \mathbf { j } + 3 \mathbf { k } )\) respectively. The plane \(\Pi _ { 1 }\) contains \(l _ { 1 }\) and the point \(P\) with position vector \(- 2 \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k }\).
  1. Find an equation of \(\Pi _ { 1 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b } + \mu \mathbf { c }\).
    The plane \(\Pi _ { 2 }\) contains \(l _ { 2 }\) and is parallel to \(l _ { 1 }\).
  2. Find an equation of \(\Pi _ { 2 }\), giving your answer in the form \(\mathrm { ax } + \mathrm { by } + \mathrm { cz } = \mathrm { d }\).
  3. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
  4. The point \(Q\) is such that \(\overrightarrow { \mathrm { OQ } } = - 5 \overrightarrow { \mathrm { OP } }\). Find the position vector of the foot of the perpendicular from the point \(Q\) to \(\Pi _ { 2 }\).
CAIE Further Paper 1 2024 November Q7
15 marks Challenging +1.2
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = \mathbf { i } + 3 \mathbf { j } - 2 \mathbf { k } + \lambda ( 2 \mathbf { i } + \mathbf { j } + \mathbf { k } )\) and \(\mathbf { r } = \mathbf { i } - 2 \mathbf { j } + 9 \mathbf { k } + \mu ( \mathbf { i } - 4 \mathbf { j } + 2 \mathbf { k } )\) respectively. The plane \(\Pi _ { 1 }\) contains \(l _ { 1 }\) and is parallel to \(l _ { 2 }\).
  1. Find the equation of \(\Pi _ { 1 }\), giving your answer in the form \(a x + b y + c z = d\).
    The plane \(\Pi _ { 2 }\) contains \(l _ { 2 }\) and the point with coordinates \(( 2 , - 1,7 )\).
  2. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). \includegraphics[max width=\textwidth, alt={}, center]{99ac7fe2-184b-4a72-89f6-03fe4b2af138-15_2723_35_101_20} The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Find a vector equation for \(P Q\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 1 2024 November Q7
15 marks Challenging +1.2
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = \mathbf { i } + 3 \mathbf { j } - 2 \mathbf { k } + \lambda ( 2 \mathbf { i } + \mathbf { j } + \mathbf { k } )\) and \(\mathbf { r } = \mathbf { i } - 2 \mathbf { j } + 9 \mathbf { k } + \mu ( \mathbf { i } - 4 \mathbf { j } + 2 \mathbf { k } )\) respectively. The plane \(\Pi _ { 1 }\) contains \(l _ { 1 }\) and is parallel to \(l _ { 2 }\).
  1. Find the equation of \(\Pi _ { 1 }\), giving your answer in the form \(a x + b y + c z = d\).
    The plane \(\Pi _ { 2 }\) contains \(l _ { 2 }\) and the point with coordinates \(( 2 , - 1,7 )\).
  2. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). \includegraphics[max width=\textwidth, alt={}, center]{beb69d0f-3f83-49bf-b9a2-329ddc7243fa-15_2723_35_101_20} The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Find a vector equation for \(P Q\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.