Verify perpendicularity using scalar product

A question is this type if and only if it asks to verify that angles are 90° or that vectors/lines are perpendicular by showing their scalar product equals zero.

1 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
CAIE P1 2016 November Q7
7 marks Standard +0.3
7 \includegraphics[max width=\textwidth, alt={}, center]{5fed65b9-a848-4343-858c-3cbac0608b24-3_736_399_260_872} The diagram shows a triangular pyramid \(A B C D\). It is given that $$\overrightarrow { A B } = 3 \mathbf { i } + \mathbf { j } + \mathbf { k } , \quad \overrightarrow { A C } = \mathbf { i } - 2 \mathbf { j } - \mathbf { k } \quad \text { and } \quad \overrightarrow { A D } = \mathbf { i } + 4 \mathbf { j } - 7 \mathbf { k }$$
  1. Verify, showing all necessary working, that each of the angles \(D A B , D A C\) and \(C A B\) is \(90 ^ { \circ }\).
  2. Find the exact value of the area of the triangle \(A B C\), and hence find the exact value of the volume of the pyramid.
    [0pt] [The volume \(V\) of a pyramid of base area \(A\) and vertical height \(h\) is given by \(V = \frac { 1 } { 3 } A h\).]