Area with exponential functions

A question is this type if and only if the curve equation involves exponential functions (e^x or a^x) and requires integration of exponential expressions.

3 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
CAIE P2 2020 November Q3
5 marks Moderate -0.3
3 \includegraphics[max width=\textwidth, alt={}, center]{8beee722-7f86-454a-bc36-27e83f1483fd-04_684_455_260_845} The diagram shows the curve \(y = 2 + \mathrm { e } ^ { - 2 x }\). The curve crosses the \(y\)-axis at the point \(A\), and the point \(B\) on the curve has \(x\)-coordinate 1 . The shaded region is bounded by the curve and the line segment \(A B\). Find the exact area of the shaded region.
CAIE P2 2020 November Q3
5 marks Moderate -0.3
3 \includegraphics[max width=\textwidth, alt={}, center]{b4a4082c-f3cd-47c5-8673-680dae9a22bd-04_684_455_260_845} The diagram shows the curve \(y = 2 + \mathrm { e } ^ { - 2 x }\). The curve crosses the \(y\)-axis at the point \(A\), and the point \(B\) on the curve has \(x\)-coordinate 1 . The shaded region is bounded by the curve and the line segment \(A B\). Find the exact area of the shaded region.
Edexcel Paper 1 Specimen Q7
5 marks Standard +0.3
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{96e004d9-c6b6-474b-9b67-06e1771c609e-14_604_1063_251_502} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of part of the curve with equation $$y = 2 \mathrm { e } ^ { 2 x } - x \mathrm { e } ^ { 2 x } , \quad x \in \mathbb { R }$$ The finite region \(R\), shown shaded in Figure 4, is bounded by the curve, the \(x\)-axis and the \(y\)-axis. Use calculus to show that the exact area of \(R\) can be written in the form \(p \mathrm { e } ^ { 4 } + q\), where \(p\) and \(q\) are rational constants to be found.
(Solutions based entirely on graphical or numerical methods are not acceptable.)