Edexcel
C12
2014
January
Q7
5 marks
Moderate -0.3
7. (a) Show that
$$12 \sin ^ { 2 } x - \cos x - 11 = 0$$
may be expressed in the form
$$12 \cos ^ { 2 } x + \cos x - 1 = 0$$
(b) Hence, using trigonometry, find all the solutions in the interval \(0 \leqslant x \leqslant 360 ^ { \circ }\) of
$$12 \sin ^ { 2 } x - \cos x - 11 = 0$$
Give each solution, in degrees, to 1 decimal place.
\includegraphics[max width=\textwidth, alt={}, center]{e878227b-d625-4ef2-ac49-a9dc05c5321a-15_106_97_2615_1784}
AQA
AS Paper 2
2024
June
Q2
1 marks
Easy -1.8
2 One of the equations below is true for all values of \(x\)
Identify the correct equation.
Tick \(( \checkmark )\) one box.
\(\cos ^ { 2 } x = - 1 - \sin ^ { 2 } x\) □
\(\cos ^ { 2 } x = - 1 + \sin ^ { 2 } x\)
\includegraphics[max width=\textwidth, alt={}, center]{f5e0d980-4c50-4735-aea7-1bdf448a58f7-02_113_113_1658_790}
\(\cos ^ { 2 } x = 1 - \sin ^ { 2 } x\)
\includegraphics[max width=\textwidth, alt={}, center]{f5e0d980-4c50-4735-aea7-1bdf448a58f7-02_113_113_1813_790}
\(\cos ^ { 2 } x = 1 + \sin ^ { 2 } x\) □