Additional geometric or exponential factor

Summand includes an additional factor like (1/3)^(n+1) multiplied with the rational expression, requiring modified telescoping approach.

1 questions

CAIE FP1 2007 November Q2
2 Express $$\frac { 2 n + 3 } { n ( n + 1 ) }$$ in partial fractions and hence use the method of differences to find $$\sum _ { n = 1 } ^ { N } \frac { 2 n + 3 } { n ( n + 1 ) } \left( \frac { 1 } { 3 } \right) ^ { n + 1 }$$ in terms of \(N\). Deduce the value of $$\sum _ { n = 1 } ^ { \infty } \frac { 2 n + 3 } { n ( n + 1 ) } \left( \frac { 1 } { 3 } \right) ^ { n + 1 }$$